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Abstract

Physically based rendering is a process for photorealistic digital image synthesis and
one of the core problems in computer graphics. It involves simulating the light trans-

port, i.e. the emission, propagation, and scattering of light through a virtual scene that
is dened by a detailed description of object geometry and appearance. Research over
the last decades has led to sophisticated rendering techniques and recently, the inver-
sion of this process, i.e. recovering scene parameters from image observations, has also
received signicant attention. In this thesis, we investigate methods in both physically
based forward and inverse rendering that exploit light path gradients.

The rst part is concerned with scattering from specular surfaces, which produces
complex optical eects that are frequently encountered in realistic scenes: intricate caus-
tics due to focused reection, multiple refractions, and high-frequency glints from spec-
ular microstructure. Yet, despite their importance and considerable research to this end,
sampling of light paths that cause these eects remains a formidable challenge of for-
ward rendering.

We propose a surprisingly simple and general path sampling strategy that targets
the examples above. Valid light path congurations need to fulll the physical laws
of reection and refraction, and we nd these using a numerical root-nding process
that is driven by geometric light path gradients. In contrast to prior work, our method
supports high-frequency normal- or displacement-mapped geometry, samples specular-
diuse-specular (SDS) paths, and is compatible with standard Monte Carlo methods in-
cluding unidirectional path tracing. We demonstrate our method on a range of chal-
lenging scenes and evaluate it against state-of-the-art methods for rendering caustics
and glints.

In the second part, we consider dierentiable rendering algorithms. These propa-
gate derivatives through the full light transport simulation to solve inverse rendering
problems via gradient-based optimization. Recent progress has led to methods that can
simultaneously compute derivatives with respect to millions of scene parameters. At the
same time, elementary properties of these methods remain poorly understood.

Current algorithms for dierentiable rendering are constructed by mechanically dif-
ferentiating a given primal algorithm. As dierentiation fundamentally changes the un-
derlying problem, this is often suboptimal and instead, primal and dierential algorithms
should be decoupled so that the latter can suitably adapt. This is surprisingly complex.
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Even themost basicMonte Carlo path tracer already involves several design choices con-
cerning the techniques for sampling materials and emitters, and their combination, e.g.
via multiple importance sampling (MIS). Dierentiation causes a veritable explosion of
this decision tree: should we dierentiate only the estimator, or also the sampling tech-
nique? Should MIS be applied before or after dierentiation? Are specialized derivative
sampling strategies of any use? How should visibility-related discontinuities be handled
when millions of parameters are dierentiated simultaneously? We provide a taxonomy
and analysis of dierent estimators for dierential light transport to provide intuition
about these and related questions.
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1 | Introduction

Digital image synthesis in the form of physically based rendering is a classical problem in
computer graphics and beyond. The goal is to faithfully simulate the underlying physical
process of light emission, scattering through a scene, and measurement by a sensor.
Progress in this eld over the last decades has lead to tremendous advances in both
accuracy and eciency of these simulations. They are capable of producing images
with an extremely high degree of realism and they have been widely adopted in areas
like visual eects for both live-action or animated lm production, product design, or
architecture visualization.

Figure 1.1 shows a high level overview of the rendering process which turns a de-
scription of a virtual scene into a rendered image. Such a description takes the role of a
digital blueprint and includes at least the following elements:

• A geometric representation of all objects in the scene, usually in the form of poly-
hedral meshes (e.g. made from triangles or quads).

• Information about the surface material properties of objects, which dictates how
light should interact with them.

• A number of light sources that emit light into the scene.

• A virtual camera (or other measurement sensor), which species the framing of
the nal image.

Scene creation is an important, and often labor-intensive, step in the production of pho-
torealistic renderings. It requiresmodeling of intricate geometric detail as well as faithful
recreation of real-world materials. To this end, image textures are often used to encode
spatially varying material or emission properties. Common examples are the diuse
color or the surface roughness of objects. Depending on the desired use case, textures
can either be created by the hand of an artist, or captured from the real world. They are
also commonly used to add ne-scale details to the geometry via normal or displace-
ment maps that modify the orientation of surface shading normals or the position of
mesh vertices.

The digital image is then created by computing the intensity of light arriving at each
individual pixel, which turns out to be an innite-dimensional integration problem over
the space of all possible light paths connecting the emitters with the camera. Rendering
algorithms that solve this mostly sample such paths stochastically using Monte Carlo
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Inverse
Rendering

Forward
Rendering

Scene parameters

Rendered image

Figure 1.1: Physically based forward rendering generates images based on a detailed description of a

virtual scene, including a geometric representation of objects and information about their material prop-

erties. The inverse rendering process turns this problem on its head and instead aempts to recover scene

parameters from given images. In this case, the input does not necessarily need to be a rendered image

but can instead be a photograph or other type of measurement.

integration methods. Light paths are constructed from multiple straight lines connect-
ing points in the scene that were found via ray tracing, an operation that determines
intersection locations between lines and the scene geometry.

The comprehensive nature of such a simulation is what ultimately allows us to recre-
ate the rich visual complexity found in the real world, such as diuse or glossy inter-
reections between objects in the scene. Realistic light sources cast soft shadows from
objects, the time dimension of a scene can be taken into account to capture motion blur,
and virtual cameras even simulate scattering through complex lens systems resulting in
eects like depth of eld. All this can be summarized under the general term of global
illumination—a form of radiative coupling between all objects in the scene—and this
happens naturally due to how the simulation imitates the true physical process.

This is generally no simple task: generating a single image with such a method can
take minutes or even hours on current hardware. While this can be acceptable in some
cases (e.g. the visual eects industry), it is impractical for real-time applications (e.g.
video games) where individual animation frames need to be rendered within millisec-
onds. The currently predominant solution to this is to use rasterizationmethods in favor
of ray tracing. These have the advantage that objects are shaded and drawn to the -
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nal image in isolation of each other, which enables high performance due to hardware
support in traditional GPU architectures. Compared to ray tracing, this unfortunately
cannot account for global illumination between objects as easily, without using addi-
tional approximations or workarounds.

The recent addition of hardware accelerated ray tracing on modern GPUs is closing
this gap more and more and, especially during the last few years, ray tracing has also
become increasingly feasible and popular in real-time settings. In practice, rendering at
acceptable quality levels is often still problematic due to the tight computational budget
for each frame, so physically based rendering methods are usually combined with spatial
and temporal post-processing (e.g. denoising) in order to create high delity outputs in
real-time.

Light transport simulation is not only useful for the creation of appealing looking
images. Many scientic elds are studying the propagation of light or other electromag-
netic radiation as a mean to understand the world surrounding us. Knowledge about
accurate forward simulation turns out to be also tremendously helpful in designing ap-
proaches to invert this process (Figure 1.1).

Scene recovery and understanding from captured image data is of course a core prob-
lem in the eld of computer vision. Some important applications include 3D shape recon-
struction and pose estimation, sample analysis via various forms of biomedical imaging,
or even earth and atmospheric observations using satellite data.

Unfortunately, inverting the full image formation process, including global illumina-
tion, is a remarkably challenging task, mostly due to a large number of possible ambigu-
ities that can arise. Consider for instance a picture of a red object: from a single image, it
can be unclear whether the object itself has a red color (due to its material properties) or
if it is in fact a white object that is illuminated by a red light source. Many specialized re-
construction techniques therefore operate under additional assumptions and while they
can be highly eective within their design scope, they can easily fail when these assump-
tions are violated. For example, the interior of an object can be reconstructed by taking a
number of measurements with a computed tomography (CT) scanner and subsequently
inverting the process of X-ray absorption. This normally assumes absorptive materials
and tends to produce severe artifacts when the specimen contains metal fragments that
are highly reective to X-rays.

Rather than addressing specic aws of such techniques, our goal of physically based
inverse rendering is to study a universal mathematical framework that has the potential
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to improve the quality of solutions in these challenging inversion tasks in the future. We
also note that global illumination can even provide valuable additional cues that we can
leverage when unraveling the radiative scattering inside a scene.

1.1 Topics discussed in this thesis

The contributions of this thesis are split into two parts that focus on separate topics
in forward and inverse rendering. In both cases, light path gradients will provide vital
information to tackle the respective problems.

Part 1: Light transport involving specular materials. In the rst part, we consider
the problem of specular light paths: a category of paths connecting camera and emitters
where light interacts at least with one specular material, such as a mirror or glass object.
Even though today’s state-of-the-art rendering techniques are generally considered to
be robust in the presence of many dierent global illumination eects, these specular
paths remain challenging—or in some congurations even impossible—to render with
many popular algorithms. We focus on the two optical phenomena of caustics and glinty
microstructures that are particularly eye-catching eects that arise due to such paths.

Caustics. Curved specular surfaces bend and focus incident light rays and cast intricate
illumination patterns called caustics onto other (non-specular) surfaces in a scene.
This indirect light eect is commonly observed when highly concentrated illumi-
nation, e.g. from the sun, strikes materials such as metals, glass, or water. This
is the same principle that lets a camera lens systems focus light onto the image
sensor.

Glinty microstructures. A related concept is the glinty appearance of certain material
types. This mostly involves a single reection from a light source to the observer
via, e.g., a metal surface. This can create small, but visually striking, highlights
due to surface detail and imperfections, such as tiny bumps or scratches. Many
car paints also include small metallic akes that cause a glittery appearance, and
manufactured objects can have glinty appearance due to the underlying fabrica-
tion process, e.g. in the case of brushed aluminum.

Note that the surface details should be small relative to the scale of the nal image.
For example, the same challenges appearwhen observing highlights from the sun’s
reection in a wavy water surface from a distance.
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Figure 1.2: Examples of common caustics and glints. Note that these are all photographs.

See Figure 1.2 for some example photographs that illustrate representative examples of
both caustics and glints from everyday life.

What makes rendering these two eects so challenging in practice? Light that in-
teracts with specular materials has to follow the laws of reection and refraction. This
however means that only a small subset of all possible light paths connecting the lights
and the sensor is “valid”. Sampling the right congurations in this high-dimensional
space becomes very unreliable in that case, which often translates to dramatic increases
in rendering times compared to simpler scenarios without specular materials.

We will describe a general path sampling strategy that exploits this concentrated
nature of specular paths and can generate them more systematically. In particular, we
look at the problem from the perspective of numerical root-nding where valid paths
represent roots of a high-dimensional function. We then compute light path gradi-
ents that give us information about how the geometric conguration of previously in-
valid paths should be modied. This is, in principle, nothing else than the well known
Newton–Raphson method—but interesting challenges arise when combining such an
approach with standard rendering techniques.
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Part 2: Dierentiable light transport. In the second part, we investigate physically
based dierentiable rendering and outline how it can be used as a tool for solving inverse
rendering problems. Due to the previously discussed complexities, a direct inversion of
light transport is almost always impossible and instead we resort to nonlinear optimiza-
tion techniques.

Concretely, when recovering a set of scene parameters, we start with an initial guess

for all values that is subsequently rened via an iterative optimization process. At each
iteration, we can create a rendered image of the current state, which is then evaluated
by an objective or loss function to quantify “how close” we are to a desired goal, e.g. by
comparing against a target image. However, this does not tell us in what direction we
should move next to improve the loss. Also note that the space of scene parameters,
in which we search for a solution, is often huge—it is not uncommon to optimize for
millions of scene parameters at once (e.g. texturedmaterial properties or vertex positions
of a triangle mesh), so blindly moving around in this space is clearly ineective.

A way out of this sounds rather straightforward at rst: instead of only generating
a rendering at each step of the process, we additionally want to compute the scene pa-
rameter gradients. This is known to be the direction of steepest ascent inside the loss
landscape which allows us to take an informed step that will (at least locally) improve
the objective. In other words, we rely on standard nonlinear optimization, which is rel-
atively well understood today.

But this alsomeans that we need to turn the complete image formation and rendering
process into a dierentiable operation. Note that this is much more complex compared
to the gradients described in the context of specular paths above, which only involved
the local light path geometry. It also goes beyond simply implementing the complete
renderer on top of existing frameworks for automatic dierentiation of numerical code,
as this often performs suboptimally—or can even produce incorrect gradients when done
naïvely.

In this thesis, we revisit large parts of the well established theory of physically based
rendering in this new context of dierentiation. We outline which modications to ex-
isting forward rendering algorithms are necessary to solve the dierentiated form of
light transport. This also includes discussions of entirely new challenges that appear in
such a setting, e.g. the problem of discontinuous visibility changes or silhouette edges
that initially appear to be non-dierentiable.
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1.2 Organization of the thesis

The remainder of this thesis is split into four chapters. Chapter 2 will cover the necessary
foundations behind physically based (forward) rendering to provide enough context for
the two subsequent topics. Chapter 3 then covers the case of specular light paths and
Chapter 4 summarizes the theory and implementation of dierentiable rendering tech-
niques for solving inverse problems. We also put particular emphasis on discussing prior
work that is directly related to our new contributions. Finally, we conclude in Chapter 5.

1.3 List of all publications

A substantial part of this thesis is based on the following two publications [1, 2]:

Chapter 3:
Specular manifold sampling for rendering high-frequency caustics and glints
Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob
ACM Trans. Graph. (Proc. SIGGRAPH), Vol. 39, No. 4, pp 149:1–149:15, Jul. 2020

Chapter 4:
Monte Carlo estimators for dierential light transport
Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob
ACM Trans. Graph. (Proc. SIGGRAPH), Vol. 40, No. 4, pp 78:1–78:16, Jul. 2021

The author has also contributed to these additional articles that are not described in
this thesis [3, 4, 5, 6]:

The layer laboratory: a calculus for additive and subtractive composition of
anisotropic surface reectance
Tizian Zeltner and Wenzel Jakob
ACM Trans. Graph. (Proc. SIGGRAPH), Vol. 37, No. 4, pp 74:1–74:14, Aug. 2018

We present a computational framework for modeling arbitrarily layered ma-
terial structures that, compared to prior work, supports general anisotropic
reectance. This builds on a sparse representation in frequency-space that
enables additive, as well as subtractive composition of layers. The accuracy
and scope of our model is shown on dierent examples and validated against
measurements of real-world materials.
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Mitsuba 2: a retargetable forward and inverse renderer
Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob
ACM Trans. Graph. (Proc. SIGGRAPH Asia), Vol. 38, No. 6, pp 203:1–203:17, Nov. 2019

This system paper describes the implementation and design of theMitsuba 2

renderer that is intrinsically retargetable to various use cases. This includes,
e.g., changing the representation of color to spectral or polarized quantities,
vectorization that operates on large bundles of light paths simultaneously,
compilation into kernels that run on the GPU, or even dierentiable ren-
dering. We demonstrate this on several applications in both forward and
inverse rendering.

Image-based acquisition and modeling of polarimetric reectance
Seung-Hwan Baek, Tizian Zeltner, Hyun Jin Ku, Inseung Hwang, Xin Tong,
Wenzel Jakob, and Min H. Kim
ACM Trans. Graph. (Proc. SIGGRAPH), Vol. 39, No. 4, pp 139:1–139:14, Jul. 2020

While polarization is usually a subtle eect to a human observer, it can easily
be perceived by an optical sensor (e.g. using polarizing optical elements).
Realistic modeling of the interaction between polarized light and general
materials is therefore useful for solving inverse rendering problems. This
project involved the acquisition of the rst polarimetric material dataset that
captures the full angular domain at multiple wavelengths. The measured
data reveals interesting relationships between polarization and appearance,
and is readily usable in polarized physically based rendering systems.

Slope-space integrals for specular next event estimation
Guillaume Loubet, Tizian Zeltner, Nicolas Holzschuch, and Wenzel Jakob
ACM Trans. Graph. (Proc. SIGGRAPH Asia), Vol. 39, No. 6, pp 239:1–239:13, Dec. 2020

This article also investigates the problem of caustic and glint rendering, al-
beit with a very dierent approach compared to the previously mentioned
method [1]. Instead of using numerical root-nding, this closely investi-
gates the case of a single reective or refractive triangle, and nds analytic
expressions for the resulting radiance even in presence of glossy microfacet
materials. This is then combined with an algorithm that can eciently sup-
port meshes with high geometric complexity.
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2 | Background

This section reviews background material and central references that relate to the topics
of Chapters 3 and 4. Outstanding starting points for further reading are the seminal
thesis Robust Monte Carlo Methods for Light Transport Simulation by Eric Veach [7] or
the excellent book Physically Based Rendering: From Theory to Implementation by Pharr
et al. [8].

We rst begin by outlining the basics of light and how it is measured (Section 2.1),
how it iteracts with typical materials (Section 2.2), and ultimately how to describe the
scattering, propagation, and measurement processes using light transport theory (Sec-
tion 2.3).

We then take a step back and review essential probability theory and especially
Monte Carlo methods (Section 2.4) that are behind many state-of-the-art rendering algo-
rithms (Section 2.5). Finally, we present a short overview of how gradients of computer
programs can be evaluated eciently (Section 2.6), which will be crucial for the two
applications in forward and inverse rendering later.

2.1 Light and radiometry

Before moving on to the topic of light transport we will briey cover the fundamental
principles of light itself and how it is measured.

Humans are fundamentally visual creatures and therefore, scientists and philoso-
phers have speculated for over two millennia about the nature of light and the process
of vision. The extramission theory of light was rst postulated by Greek philosopher
Empedocles (494 BC–434 BC) who believed that the eyes emit a form of “re” which lets
us see objects after being combined with rays arriving from the sun. The theory was
also famously supported by Plato (428 BC–348 BC) and Euclid (about 325 BC–265 BC)
and was inuential for many centuries until the Arab scholar Alhazen (965–1040) con-
clusively determined it to be wrong.

In a similar vein, opinions were split about whether light travels instantaneously or
with a xed speed: Descartes (1596–1650), for instance, believed strongly in an innite
speed of light and it was Rømer (1644–1710) who rst demonstrated that its speed must
be nite by observing irregularities in the eclipses of a Jupiter moon, which he attributed
to the change in time that light requires to arrive at the earth due to the planets orbiting
the sun.
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One wavelength:

(b) Light is a wave(a) Light is made of particles

Figure 2.1: Two opposite views on the nature of light.

This also strongly supported Huygens’s (1629–1695) theory that light was a wave
propagating through the ether, similar to how sound waves propagate through air. A
strong opponent of this was Newton (1643–1727) who believed in the corpuscular theory
where light is made from particles instead, see Figure 2.1.

Throughout the 18th and 19th century, many experiments of diraction, interfer-
ence, and polarization by Young (1773–1829), Malus (1775–1812), Arago (1786–1853),
and Fresnel (1788–1827) further established the wave theory, and it was Maxwell (1831–
1879) who nally explained light inside the unied theory of electromagnetism. This
means, light is a transverse wave and part of the larger electromagnetic spectrum (Fig-
ure 2.2): it consists of both an electric and a magnetic eld that oscillate in union and
reinforce each other. This is also what allows the wave to travel without the presence of
a medium.

At this point, the understanding of light seemed complete. But the 20th century
brought a revival of the particle theory after Planck (1858–1947) and Einstein (1879–
1955) observed that light seems to be quantized into small packages that are now known
as photons. Today, light is understood to be both a particle and a wave, and both theories
are needed to fully explain its behavior.

Luckily, it is not necessary to simulate the full complexity of wave optics if our goal is
the creation of photorealistic images. Instead, we can work in the framework of geomet-

ric optics where the eects of polarization, interference, and diraction can be ignored.
In such a setting, it is sucient to use ray tracing, i.e. intersection of straight lines with
the scene geometry, in order to construct light paths. Further, we assume nowavelength-
dependent eects like dispersion, uorescence, or phosphorescence in this thesis. Note
however that all these topics have actually been explored in the context of computer
graphics too. For instance, there are rendering systems that additionally keep track of
polarization or uorescence throughout the simulation [4, 9] and it is increasingly more
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Wavelength in meters

Wavelength in nanometers

Figure 2.2: Visible light represents a small band of the full electromagnetic spectrum, between roughly

380 and 750 nanometers.

common to locally account for wave-optical eects in derivations of material models [10,
11, 12]. Recently, Steinberg and Yan [13] also made advances towards a generalized light
transport framework that can incorporate interference eects on a global scale.

Radiometry is concernedwith themeasurement of electromagnetic radiation. A good
introduction to the eld is McCluney’s reference text [14] but many sources in computer
graphics also cover the essentials [7, 15] which we will outline here. As radiometry mea-
sures positional and/or directional densities of energy we will rst clarify these domains.

2.1.1 Positional and directional domains

For the purpose of simulating light scattering between objects in a (virtual) scene, we
consider positions x ∈ M on a two dimensional sub manifold of surfaces embedded in
3D space (M ⊆ R3).

The associated area measure d𝐴(x) is used to integrate functions over surface areas:∫
M

𝑓 (x) d𝐴(x). (2.1)

Light is traveling between positions along straight lines parameterized as normalized di-
rections 𝝎 ∈ S2 on the 3D unit sphere. They are also commonly expressed via spherical
coordinates zenith 𝜃 ∈ [0, 𝜋) and azimuth 𝜙 ∈ [0, 2𝜋) as

𝝎 =

©«
𝜔𝑥

𝜔𝑦

𝜔𝑧

ª®®®¬ =

©«
sin𝜃 cos𝜙
sin𝜃 sin𝜙

cos𝜃

ª®®®¬ (2.2)

computed via
𝜃 = arccos(𝜔𝑧), 𝜙 = arctan2(𝜔𝑦, 𝜔𝑥 ). (2.3)
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Figure 2.3: Le: Illustration of the solid angle 𝑠 subtended by some area 𝐴. Right: The corresponding

projected solid angle 𝑠⊥.

The area on the unit sphere S2 subtended by an area 𝐴 is known as a solid angle.
This is the extension of the well known planar angle (on the 2D unit circle) to 3D space,
see Figure 2.3 (left). Solid angles are measured in the dimensionless unit steradian [sr].

Integration over the spherical directions S2,∫
S2

𝑓 (𝝎) dΩ(𝝎) B
∫ 2𝜋

0

∫ 𝜋

0
𝑓 (𝜃, 𝜙) sin𝜃 d𝜃 d𝜙, (2.4)

uses the solid angle measure dΩ(𝝎) = sin𝜃 d𝜃 d𝜙 , where sin𝜃 is a Jacobian determinant
term that accounts for compression along the poles of the unit sphere.

Another useful related measure is projected solid angle dΩ⊥x (𝝎) = dΩ(𝝎) |cos𝜃 |
shown in Figure 2.3 (right). Here, the solid angle is additionally projected onto the disk
and 𝜃 is the angle between the surface normal n(x) at position x and the direction 𝝎.
Because both vectors are normalized, the cosine can be computed conveniently as the
dot product cos𝜃 = 𝝎 · n(x).

2.1.2 Radiometric quantities

The following paragraphs dene the relevant radiometric quantities for rendering, which
are also illustrated in Figure 2.4.

Flux. The Planck-Einstein relation tells us that the energy 𝑄 (measured in joule [J])
carried by a single photon is inversely proportional to its wavelength 𝜆:

𝑄 =
ℎ 𝑐

𝜆
[J] (2.5)
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(a) Flux (b) Irradiance (c) Radiant exitance

(d) Intensity (e) Radiance

Figure 2.4: Illustration of the radiometric quantities defined in this section.

with the Planck constant ℎ ≈ 6.63× 10−34 J · s and the speed of light 𝑐 ≈ 3.00× 108m · s−1

measured in vacuum.
The amount of energy owing through a nite surface 𝐴 per unit time is known as

(radiant) ux, see Figure 2.4 (a). Its unit is watts [W] or joules per second.

Φ(𝐴) = d𝑄
d𝑡

[W = J · s−1] (2.6)

Irradiance. The area density of ux arriving at an innitesimal area around x is known
as irradiance, see Figure 2.4 (b).

𝐸 (x) = dΦ(𝐴)
d𝐴(x) [W ·m−2] (2.7)

Radiant exitance. Analogously, the ux leaving a surface per unit area (due to emis-
sion or scattering) is radiant exitance, see Figure 2.4 (c).

𝑀 (x) = dΦ(𝐴)
d𝐴(x) [W ·m−2] (2.8)

In computer graphics,𝑀 (x) is sometimes also referred to as radiosity 𝐵(x).

Intensity. One can alternatively measure the directional density of ux that travels
through an innitesimal solid angle around 𝝎. This is called (radiant) intensity, see
Figure 2.4 (d).

𝐼 (𝝎) = dΦ(𝐴)
dΩ(𝝎) [W · sr−1] (2.9)
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Figure 2.5: Illustration of Lambert’s cosine law. Le: Light strikes a surface at perpendicular incidence

and hits a patch of area𝐴. Right: When arriving at an angle 𝜃 , the surface area of the patch is stretched.

Radiance. By taking the limit for both direction and area (perpendicular to 𝝎) we
arrive nally at the denition of radiance, see Figure 2.4 (e). It can be interpreted as
intensity per perpendicular unit area or alternatively ux per unit solid angle and per-
pendicular area:

𝐿(x,𝝎) = d𝐼 (𝝎)
d𝐴⊥(x,𝝎)

=
d2Φ(𝐴)

dΩ(𝝎) d𝐴⊥(x,𝝎)

=
d2Φ(𝐴)

dΩ⊥x (𝝎) d𝐴(x)

=
d2Φ(𝐴)

dΩ(𝝎) d𝐴(x) |cos𝜃 | [W · sr−1 ·m−2] (2.10)

This also introduces a cos𝜃 factor that can either be interpreted as a projected area
measure (perpendicularly to 𝝎, i.e. d𝐴⊥(x,𝝎) = d𝐴(x) |cos𝜃 |), or as the projected solid
angle measure Ω⊥x (𝝎) dened earlier.

This additional factor is also related to thewell-known Lambert cosine law (Figure 2.5)
that explains how light arriving at an angle 𝜃 is spread out, which scales the incident
radiance by a factor cos𝜃 . This is also known as the foreshortening term.

Radiance is the most frequently used quantity in computer graphics for two reasons:

1. All previously dened quantities can be derived in terms of radiance by integrating
over surface areas or directions.

2. Radiance traveling along a direction through empty space1 remains constant. This
1In this thesis we restrict ourselves to pure surface scattering. We do not cover the more general radiative
transfer setting [16] where light might be scattered or absorbed while traversing participating media that
occupy the space between surfaces.
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means we can easily relate incident radiance 𝐿i at a position x with outgoing radi-

ance 𝐿o at some other position y along 𝝎 (or vice versa).

𝐿i(x,𝝎) = 𝐿o(y,−𝝎) (2.11)

Spectral quantities. The quantities above are usually accounting for the total energy
integrated over all wavelengths. Note, however, that there exist spectral variants of them
where an additional limit over 𝜆 is taken. For example, spectral radiance is dened as

𝐿(x,𝝎, 𝜆) = d𝐿(x,𝝎)
d𝜆

(2.12)

and its integrated version can be recovered as 𝐿(x,𝝎) =
∫ ∞
0 𝐿(x,𝝎, 𝜆) d𝜆.

In practice, this distinction is not relevant for the covered topics as we do not simulate
eects like uorescence or dispersion that have a dependence on wavelength. In other
words, we can simply simulate each wavelength of light separately.
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(b) Smooth dielectric (c) Rough dielectric

(e) Rough conductor(d) Smooth conductor

(a) Lambertian diffuse

(g) Rough plastic(f) Smooth plastic

Figure 2.6: Overview of common material models found in a rendering system. (a) The diuse model

scaers light into all directions. (b, d) Specular surfaces behave based on the laws of reflection and

refraction. (c, e) Rough materials cause glossy reflections and refractions due to a bumpymicrostructure.

(f, g) Layered combinations of a diuse substrate with either a smooth or rough dielectric coating. This

also causes multiple-scaering between the base layer and the coating.
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Figure 2.7: Geometric configuration used in the definition of the BSDF.

2.2 Material models

The creation of photorealistic images also entails simulating a diverse set of materials.
Their appearance is ultimately a result of light interacting with surfaces, either in the
form of reection or transmission. Whereas some materials act like mirrors with sharp
reections, others are matte and scatter light more uniformly.

In rendering systems, this complexity is encapsulated by various material models.

2.2.1 Bidirectional scaering distribution function (BSDF)

The bidirectional scattering distribution function (BSDF) is the mathematical description
of light interaction with a given material and quanties how much of it scatters from a
direction 𝝎i to another direction 𝝎o at surface position x. Its exact denition is the ratio
of dierential outgoing radiance to dierential incident irradiance

𝑓𝑠 (x,𝝎i→𝝎o) =
d𝐿o(x,𝝎o)
d𝐸i(x,𝝎i)

=
d𝐿o(x,𝝎o)

𝐿i(x,𝝎i) |cos𝜃 i | dΩ(𝝎i)
[sr−1] . (2.13)

We use the arrow notation “→” to indicate the direction of light ow. The corresponding
geometric conguration is illustrated in Figure 2.7.

Physically based BSDFs require a few important properties to hold:

Positivity. Scattering cannot lead to a case where “negative light” is reected.

𝑓𝑠 (x,𝝎i→𝝎o) ≥ 0 (2.14)

Energy conservation. A surface cannot reect more light than it receives.∫
S2

𝑓𝑠 (x,𝝎i→𝝎o) |cos𝜃 i | dΩ(𝝎i) ≤ 1 (2.15)
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Reciprocity. The owof light is symmetric between emission and observer. Thismeans
the BSDF should be invariant to interchanging its 𝝎i and 𝝎o arguments. This is
also known as Helmholtz reciprocity [17].

𝑓𝑠 (x,𝝎i→𝝎o) = 𝑓𝑠 (x,𝝎o→𝝎i) (2.16)

Sometimes it is more appropriate to use the expressions BRDF2 𝑓𝑟 and BTDF3 𝑓𝑡 to make
the explicit distinction between light reected to the upper, or transmitted to the lower
hemisphere respectively, where 𝑓𝑟 (x,𝝎i→𝝎o) + 𝑓𝑡 (x,𝝎i→𝝎o) = 𝑓𝑠 (x,𝝎i→𝝎o).

In the following sections we will cover the most common classes of BSDFs that are
also illustrated in Figure 2.6.

2.2.2 Lambertian diuse

The most simple BSDF is one that scatters light uniformly into the upper hemisphere,
as illustrated in Figure 2.6 (a). Hence, there is only a constant BRDF component without
transmission (𝑓𝑡 = 0):

𝑓𝑟 (x,𝝎i→𝝎o) =
𝜌

𝜋
. (2.17)

This is referred to as a Lambertian or simply diuse BRDF, where 𝜌 is the diuse albedo
that controls how much of the incident light is reected: a value 𝜌 = 1means all light is
reected whereas 𝜌 = 0 describes a purely absorptive material. Usually, materials have
varying reectance at dierent wavelengths which ultimately results in their perceived
color. The scale factor 1/𝜋 comes from the energy conservation condition above and
makes sure no extra energy is created in the process. It can be veried by integrating
the (cosine weighted) BRDF over the upper hemisphereH 2 ⊂ S2:∫

H 2
𝑓𝑟 (x,𝝎i→𝝎o) |cos𝜃 i | dΩ(𝝎i) =

𝜌

𝜋

∫
H 2
|cos𝜃 i | dΩ(𝝎i) = 𝜌. (2.18)

Note that this BSDF is mostly of theoretical interest and real-world materials with a
matte appearance behave quite dierently at grazing and retro-reective angle cong-
urations as they are the result of scattering on micro geometry or subsurface scattering
inside the material. In practice, more plausible models [18, 19, 20, 21] are available.
2Bidirectional reectance distribution function.
3Bidirectional transmittance distribution function.
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Figure 2.8: Geometric configuration of light arriving at a dielectric interface between IORs 𝜂i and 𝜂t. The

incident direction 𝝎i is split into two new directions 𝝎r and 𝝎t corresponding to reflection and refraction.

2.2.3 Smooth dielectric

The interaction of electromagnetic radiation with matter diers signicantly between
conducting (e.g. metals) and non-conducting (dielectric) materials. We will rst cover
the dielectric case before discussing conductors in Section 2.2.4.

Scattering from specular (perfectly smooth) surfaces forms the foundation of many
more general material models today and therefore it is advantageous to rst look at this
basic case.

In general, dielectrics cause light to both reect and refract4, as shown in Figure 2.6 (b)
and Figure 2.8.

Specular scaering. The scattering direction of light is determined via the laws of
specular reection and refraction that are analytic solutions toMaxwell’s equations. The
latter of the two is also known as the Sahl-Snell law.

Reection : 𝜃 i = 𝜃r (2.19)

Refraction : 𝜂i sin𝜃 i = 𝜂o sin𝜃o (2.20)

These relate an incident angle 𝜃 i with its reected (𝜃r) and refracted (𝜃t) counterparts
based on the indices of refraction (IORs) 𝜂i and 𝜂t on both sides of the scattering interface.
The associated geometric conguration is illustrated in Figure 2.8.

These IORs describe how fast light propagates inside dierent media. Vacuum has
an IOR of 1.0 (by denition) whereas most typical solids have an IOR around 1.5. Some
4In practice, not all dielectrics necessarily have a noticeable transmission component as their interiors
can be lled with absorptive particles or the dielectric is applied as a coating on some substrate, see
Section 2.2.6. In such cases it is usually sucient to only model their reection component.
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Perpendicular electric field Parallel electric field

: point into the plane
: point out of the plane

Figure 2.9: The electromagnetic fields used for the derivation of the Fresnel equations where the electric

fields E are either perpendicular (le) or parallel (right) to the plane of incidence. The corresponding

magnetic fields H are orthogonal to E and the light propagation direction.

materials (e.g. diamond, 𝜂 ≈ 2.4) can be notably denser, whereas most liquids (e.g. water,
𝜂 ≈ 1.33) are less dense5.

Equations (2.19) and (2.20) can also be written in vector form which leads to a more
straightforward implementation without trigonometric functions:

S(𝝎i, n, 𝜂) =

Sr(𝝎i, n), if reection,

St(𝝎i, n, 𝜂), if transmission,
where (2.21)

Sr(𝝎i, n) = 2 (𝝎i · n) n − 𝝎i, (2.22)

St(𝝎i, n, 𝜂) = −𝜂 (𝝎i − (𝝎i · n) n) − n
√︃
1 − 𝜂2(1 − (𝝎i · n)2). (2.23)

Here we additionally switched to a relative index of refraction 𝜂 = 𝜂i/𝜂t for convenience.

Fresnel equations. Having dened the reected and refracted directions, it is not yet
clear how the incident radiance is split up between the two. This is quantied by the
famous Fresnel equations [22]. Even though we had previously stated that we would ig-
nore eects of polarization in this thesis (Section 2.1), this part requires some awareness
of the underlying wave nature of light.

In particular, the equations are derived separately for two dierent kinds of linearly
polarized light where the electric eld E is aligned either perpendicularly (“⊥”) or parallel
(“‖”) to the plane of incidence6 (dened by𝝎i and n). The situation is shown in Figure 2.9.
5Technically, the IOR is also a function of the light’s frequency which causes light to “split” into a con-
tinuum of directions based on its wavelength. This is called dispersion and is most commonly known
from light interacting with a prism or with water droplets in the air which will cause a rainbow. In most
scenarios, the eect of dispersion is limited and therefore usually ignored in computer graphics. This is
equivalent to associating a constant IOR with each dielectric material.

6There is an arbitrary decision here with respect to which vectors the electromagnetic elds should be
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Dielectric reflectance (top) Dielectric reflectance (bottom)

Figure 2.10: The Fresnel equations predict how much light is reflected at a dielectric interface from a

particular incident angle 𝜃 i in the case of perpendicular or parallel waves. Le: Light going from air to

glass (𝜂i ≈ 1.0, 𝜂t ≈ 1.5). Right: The opposite configuration where light leaves the glass. Total internal

reflection takes place aer the critical angle 𝜃c.

The Fresnel equations then relate the incident and reected electric elds via

𝑟⊥(𝜃 i, 𝜂i, 𝜂t) =
E⊥r
E⊥i

=
𝜂i cos𝜃 i − 𝜂t cos𝜃t
𝜂i cos𝜃 i + 𝜂t cos𝜃t

= −sin(𝜃 i − 𝜃t)
sin(𝜃 i + 𝜃t)

(2.24)

𝑟 ‖ (𝜃 i, 𝜂i, 𝜂t) =
E‖r
E‖i

=
𝜂t cos𝜃 i − 𝜂i cos𝜃t
𝜂t cos𝜃 i + 𝜂i cos𝜃t

= + tan(𝜃 i − 𝜃t)
tan(𝜃 i + 𝜃t)

(2.25)

where cos𝜃t can be computed from the law of refraction as cos𝜃t =
√︁
1 − (𝜂i/𝜂o)2 sin2 𝜃 i.

Note that, due to the expression in the square root, the two resulting reection amplitude

coecients 𝑟⊥, 𝑟 ‖ can be complex-valued and also encode the potential phase shift of the
polarized wave.

Finally, the reectance (i.e. how much of the radiance is reected at a particular inci-
dent angle) is given by the squared magnitudes of the coecients:

𝑅⊥(𝜃 i, 𝜂i, 𝜂t) = |𝑟⊥(𝜃 i, 𝜂i, 𝜂t) |2 (2.26)

𝑅‖ (𝜃 i, 𝜂i, 𝜂t) =
��𝑟 ‖ (𝜃 i, 𝜂i, 𝜂t)��2 . (2.27)

Figure 2.10 shows typical curves for both 𝑅⊥ and 𝑅‖ plotted over all incident angles.
Note that for light scattering at a less dense medium (e.g. when scattering from glass to
air), these clearly show the critical angle 𝜃c = arcsin (𝜂𝑡/𝜂𝑖) after which no more light is
transmitted. This phenomenon is known as total internal reection.

Because we ultimately do not care about the actual polarization state here, we can
now average the reectances for the two eld orientations, which gives us the nal

measured exactly. This leads to dierent conventions for the positive/negative signs of the resulting
Fresnel equations below. See Hecht [23] for a complete discussion of their derivation.
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Fresnel term known in computer graphics

𝐹 (𝝎i, n) =
1
2

(
𝑅⊥(𝜃 i, 𝜂i, 𝜂t) + 𝑅‖ (𝜃 i, 𝜂i, 𝜂t)

)
, (2.28)

where the explicit IOR arguments are usually omitted for brevity and the angle 𝜃 i is the
angle between incident direction 𝝎i and the normal direction n. Note that this gives us
at the same time the expression for transmittance as 1 − 𝐹 due to energy conservation.

BSDF definition. With all these details out of the way, we can now write down the
denitions of the BRDF and BTDF components of the smooth dielectric BSDF

𝑓𝑟 (x,𝝎i→𝝎o) = 𝐹 (𝝎i, n)
𝛿Ω (𝝎o, Sr(𝝎i, n))

|cos𝜃 i |
(2.29)

𝑓𝑡 (x,𝝎i→𝝎o) = (1 − 𝐹 (𝝎i, n))
𝛿Ω (𝝎o, St(𝝎i, n,

𝜂i
𝜂o
))

|cos𝜃 i |
𝜂2o

𝜂2i
, (2.30)

where the cos𝜃 i terms cancel out the same foreshortening term in the BSDF denition
(2.13) as it is already accounted for by the Fresnel equations.

Because light can only scatter into two xed directions, these contain a Dirac delta
function 𝛿Ω (𝝎,𝝎′) in the solid angle measure. Despite its name, this is not a function in
the conventionalmeaning but is onlymeant to evaluate to a valuewhen being integrated.
In the case of functions 𝑔 over the spherical domain,∫

S2
𝑔(𝝎′) 𝛿Ω (𝝎,𝝎′) dΩ(𝝎′) = 𝑔(𝝎), (2.31)

where the delta function vanishes everywhere except at 𝝎 = 𝝎′.
One last detail is the 𝜂2o/𝜂2i term that appears in 𝑓𝑡 which describes the fact that radiance

is compressed into a smaller solid angle when refracted into a medium. Interestingly,
refraction does not obey the reciprocity condition from Equation (2.16). To properly
restore the symmetry, Veach [7] pointed out that these scale factors need to be included
as well:

𝑓𝑡 (x,𝝎i→𝝎o)
𝜂2o

=
𝑓𝑡 (x,𝝎o→𝝎i)

𝜂2i
. (2.32)

2.2.4 Smooth conductor

Similarly to the dielectric case, we can also accurately describe conductor (i.e. metal) ma-
terials, e.g. as shown in Figure 2.6 (d). While the law of reection (2.19) still holds, their
reectance properties are quite dierent due to electrons that move freely on the atomic
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Conductor reflectanceRefractive index for gold

Figure 2.11: Le: The two components of the complex refractive index 𝜂 = 𝑛 − 𝑖𝑘 for gold that shows

a strong wavelength dependence. Right: The corresponding reflectance curves predicted by the Fresnel

equations at 633nm.

structure and interact with the incident electromagnetic radiation. It is remarkable how-
ever that the Fresnel equations (2.24) and (2.25) are still sucient to describe this process
by characterizing conductors with a complex-valued index of refraction 𝜂 = 𝑛 − 𝑖𝑘 . The
smooth conductor BRDF therefore has the same form as Equation (2.29) and we assume
no transmission7 into the metal (𝑓𝑡 = 0).

The use of complex numbers for IORs might seem odd at rst but this is merely
a mathematical tool to describe the absorption inside of the metal. It comes from the
expression of a plane wave propagating through a medium

𝑊 (𝑡) = exp(−𝑖 𝑡 𝛼 𝜂) (2.33)

with increasing time 𝑡 and a constant 𝛼 related to the wave frequency. When introducing
some imaginary component 𝑘 > 0, this now leads to an exponential decay of the wave
amplitude as it travels deeper into the medium:

𝑊absorbing(𝑡) = exp(−𝑖 𝑡 𝛼 (𝑛 − 𝑖𝑘)) (2.34)

= exp(−𝑖 𝑡 𝛼 𝑛)︸          ︷︷          ︸
same as in real case

· exp(−𝑡 𝛼 𝑘).︸         ︷︷         ︸
exponential decay

(2.35)

Compared to dielectrics, the IORs of conductors have a strong wavelength dependence
which ultimately is the cause of their colored appearance. Figure 2.11 shows the IOR of
gold plotted over the visible spectrum and the resulting Fresnel reectance curves for
one particular wavelength.
7This is a safe assumption because light usually travels only very short distances (< 1𝜇m) into metals
before being fully absorbed. Additionally, 𝜃t, as computed from the law of refraction, is now a complex-
valued expression and loses its previous interpretation as the refracted angle. The correct expression can
be found in the optics literature [24, 25] but is not commonly used in rendering.
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Figure 2.12: Vectors and corresponding angles involved in BSDF models based on microfacet theory.

Light interacts with a rough material (that has an overall macroscopic surface normal n) along incident

and outgoing directions 𝝎i,𝝎o. The half-vector 𝝎h is the orientation of a microfacet that would lead to

perfectly specular reflection from 𝝎i to 𝝎o.

2.2.5 Microfacet models

The previous sections covered very idealized material classes that lie on extreme ends
of a continuum: light is either reected or refracted into a discrete set of directions, or
scattered uniformly into the hemisphere. In reality however, most materials fall some-
where in between these two cases and have a glossy appearance, for example as shown
in Figure 2.6 (c, e).

Early models for this in computer graphics relied on ad-hoc approaches [26] while
the seminal work of Beckmann and Spizzichino [27] and Torrance and Sparrow [28]
investigated accurate scattering of light on rough surfaces by studying reections caused
by many randomly oriented mirror-like facets. These can be interpreted as tiny bumps
or details in the actual surface and could, in theory, also be modeled as part of the scene
geometry, see Figure 2.12. When facets are suciently small (i.e. the surface appears
smooth and no details can be perceived by the eye), we can instead turn to statistical
averages to model their aggregated scattering behavior in a much more ecient way8.
This model was introduced to graphics in form of the famous Cook-Torrance BRDF [29]

𝑓𝑟 (x,𝝎i→𝝎o) =
𝐹 (𝝎i,𝝎h) 𝐷 (𝝎h)𝐺 (𝝎i,𝝎o,𝝎h)

4 |cos𝜃 i | · |cos𝜃o |
(2.36)

that is now understood in the larger framework ofmicrofacet theory and has proven suc-
cessful due to its realistic appearance and its ability to match real world measurements
surprisingly well.

The expression includes various terms that we will discuss shortly: 𝐹 is the Fres-
nel reectance, 𝐷 is the normal distribution function (NDF) that characterizes the rough
surface, and 𝐺 is a shadowing-masking term.
8We will come back to the other case with a visible (specular) microgeometry later in Section 3.1.5.
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The analogous refraction component (BTDF) to Equation (2.36) was later derived by
Stam [30] and Walter et al. [31]:

𝑓𝑡 (x,𝝎i→𝝎o) =
|𝝎i · 𝝎h | · |𝝎o · 𝝎h |
|cos𝜃 i | · |cos𝜃o |

𝜂2o(1 − 𝐹 (𝝎i,𝝎h))𝐷 (𝝎h)𝐺 (𝝎i,𝝎o,𝝎h)
(𝜂i(𝝎i · 𝝎h) + 𝜂o(𝝎o · 𝝎h))2

. (2.37)

Today, almost all physically based BSDFs use microfacet models in some form, see Sec-
tion 2.2.6.

In both components, an important quantity is the half-vector direction

𝝎h :=
𝜂i𝝎i + 𝜂o𝝎o

‖𝜂i𝝎i + 𝜂o𝝎o‖
, (2.38)

which is written here in its generalized form [31] including refractive indices in order to
be compatible with refraction and reection (where 𝜂i = 𝜂o). It can be interpreted as the
orientation of a microfacet (i.e. amicrofacet normal) that causes reection (or refraction)
along the two directions 𝝎i and 𝝎o for which the BSDF is evaluated. The reection case
is illustrated in Figure 2.12.

Fresnel reflectance 𝐹 . This term was previously discussed in Section 2.2.3. Based on
the choice of refractive indices (real or complex-valued), we can model both dielectric
or conductive materials via the same expression.

In the rough case, the half-vector 𝝎h takes the role of the surface normal to establish
a suitable coordinate frame for evaluating the Fresnel equations.

Normal distribution function 𝐷 . The NDF is the statistical distribution of micro-
facet normal orientations on the rough surface. An important constraint is that its pro-
jection onto the macroscopic surface normal n has to be normalized:∫

S2
𝐷 (m) (m · n) dΩ(m) = 1. (2.39)

Evaluating 𝐷 based on the half-vector 𝝎h in Equations (2.36) and (2.37), can intuitively
be understood as measuring how much of the microfacet area is aligned to result in
specular reection (or refraction).

The two most popular choices for NDFs in computer graphics are the Beckmann [27]
and GGX distributions [31, 32]:

𝐷Beck.(m) = 𝜒+(m · n) 𝑒
− tan2 𝜃m

𝛼2

𝜋𝛼2 cos4 𝜃m
(2.40)

𝐷GGX(m) = 𝜒+(m · n) 𝛼2

𝜋 cos4 𝜃m(𝛼2 + tan2 𝜃m)2
(2.41)
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Microfacet normal distribution

Figure 2.13: Le: A visualization of the normal distribution function (NDF) on a hypothetical rough

surface. Right: Beckmann and GGX NDFs ploed over microfacet elevation angles 𝜃m. The wider tails

of the GGX distribution are clearly visible. Both functions are evaluated for roughness 𝛼 = 0.5 here.

where the Heaviside function 𝜒+(𝑥) is 1 if 𝑥 > 0 and 0 otherwise; it constrains the
microfacet normals m to vectors on the same side as the macroscopic normal n.

Both NDFs are parametrized with a surface roughness parameter 𝛼 that models the
variation of the microfacet normals. It is related to the slope standard deviation 𝜎 of the
microfacets via 𝛼 =

√
2𝜎 . Note that the Beckmann distribution is based on a Gaussian

distribution of microfacet slopes and GGX is the distribution of normals on an ellipsoid.
Both options behave similarly but GGX is considered more plausible nowadays due to
its wider tails that match many real measured materials more closely. See Figure 2.13
for an illustration of the NDF and a plot that contrasts the two distributions with each
other.

There also exist several generalizations of these models in form of additional shape
control [19, 33], anisotropic variants [34, 35] and o-centered distributions [36, 37].

Shadowing-masking𝐺 . In the BSDF model we also have to consider that not all mi-
crofacets will be visible from any given incident or outgoing direction 𝝎i or 𝝎o. Instead,
some will be occluded behind other facets, see Figure 2.14 (a). The solution to this is
Smith’s shadowing-masking function 𝐺1(𝝎,m) [38] which measures the amount of mi-
crofacets with orientation m that are visible from 𝝎. For obvious reasons, this function
also depends on the underlying choice of the NDF. It can be computed as

𝐺1(𝝎,m) = 𝜒+(𝝎 ·m) cos𝜃∫
S2 𝐷 (m)〈𝝎 ·m〉 dΩ(m)

(2.42)

with 〈a · b〉 denoting a clamped dot product that is zero for a · b < 0.
Fortunately, analytic solutions to this are available for both Beckmann and GGX
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Microfacet shadowing / masking

Figure 2.14: Le: The shadowing (and masking) functions express how much of the microfacet surface is

illuminated (or visible) from a given direction 𝝎. Right: Comparison of the shadowing function derived

from the Beckmann and GGX NDFs (at 𝛼 = 0.5), ploed over the elevation angle of the incident direction.

distributions:

𝐺Beck.
1 (𝝎,m) = 𝜒+(𝝎 ·m) 2

1 + erf(𝑎) + 1
𝑎
√
𝜋
𝑒−𝑎2

(2.43)

𝐺GGX
1 (𝝎,m) = 𝜒+(𝝎 ·m) 2

1 +
√︃
1 + 1

𝑎2

(2.44)

with the error function erf(𝑥) = 2/√𝜋
∫ 𝑥

0 𝑒−𝑡𝑑𝑡 and 𝑎 := (𝛼 tan𝜃 )−1 Again, these two are
contrasted against each other in Figure 2.14 (b).

The nal term 𝐺 in the BSDF model should account for shadowing and masking
from both directions 𝝎i and 𝝎o. A simple option is to assume that these two events are
uncorrelated with each other. In that case,

𝐺 (𝝎i,𝝎o,m) = 𝐺1(𝝎i,m)𝐺1(𝝎o,m). (2.45)

A more accurate option is to take the correlation due to microfacet heights into ac-
count. The higher up a facet lies in the microstructure, the more likely it is unoccluded
by another one. This results in the slightly more complex expression

𝐺 (𝝎i,𝝎o,m) =
𝐺1(𝝎i,m)𝐺1(𝝎o,m)

𝐺1(𝝎i,m) +𝐺1(𝝎o,m) −𝐺1(𝝎i,m)𝐺1(𝝎o,m)
. (2.46)

Note that the shadowing-masking term eectively reduces the standard microfacet
BSDFs to a single-scattering model and all light removed by 𝐺 would instead scatter
again between multiple microfacets. In practice, this leads to a severe energy loss issue
especially at high roughness values. We ignore this problem here but note that some
approaches exist that tackle this issue [39, 40, 41].
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Derivations and full discussions of all terms in this section are out of the scope of
this thesis. Please refer to Heitz’ excellent technical report [35] for all details regarding
shadowing-masking and microfacet theory in general.

2.2.6 Layered materials

While themodels in Figure 2.6 (a–e) are well understood and accurate for their respective
use cases, they only represent a relatively small set of materials found in the real world
and most typical surfaces exhibit mixtures of dierent scattering types.

A popular approach to handle this inside of a physically based rendering system is to
model the general case as layered materials, i.e. a stack of dierent BSDFs each with their
own scattering properties and indices of refraction. Figure 2.6 (f–g) for instance show
the common combination of a diuse substrate with either smooth or rough dielectric
coatings applied on top of it. These are sometimes referred to as “plastic-like” materials
and can plausibly approximate a large number of real-world materials such as ceramics,
car paint, nished woods, or dierent types of paint.

In its most basic interpretation, layering is just a linear combination of several indi-
vidual BSDFs. But from a more physical perspective, the contribution of each layer is
highly dependent on its Fresnel reectance (and thus varies with the incident angle) and
there can be a considerable amount of multiple-scattering inside and between the layers
themselves that causes changes in color saturation and perceived roughness.

Approaches for layered materials are roughly split into three groups:

1. Analytic models which only approximate the real eect of multiple-scattering but
are also usable in real-time applications [42, 43, 44].

2. A discretized Fourier basis representation of the BSDFs that allows the use of the
adding-doubling method [45] to precompute the layered material before render-
ing [3, 46]. These approaches are accurate but can be very memory intensive.

3. Light scattering through a stack of layers can also be simulated as a randomwalk [47,
48, 49, 50]. This is very general and does not require any extra memory, but instead
causes additional variance due to the stochastic nature of the simulation.
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Senso
r plan

e

(a) Measurement (b) Transport (c) Scattering

Figure 2.15: Three fundamentals steps of light transport simulation. (a) Measurement converts incident

radiance into recorded pixel values on the film of a conceptual sensor. (b) Transport moves radiation

between surfaces, and (c) scaering models the surface’s response to incident illumination.

2.3 Light transport

Following the discussion of light (Section 2.1) and materials (Section 2.2), we can now
turn to the description of light transport that we aim to simulate during the rendering
process. This can be summarized with three equations illustrated in Figure 2.15: mea-

surement, transport, and scattering. Together, they explain how light is emitted from light
sources, propagates through a scene, and is ultimately collected by a sensor.

We will discuss the equations from the perspective of three formulations using dif-
ferent parameterizations of the problem domain, either with directional integrals over
solid angles (Section 2.3.1), area integrals over scene surfaces (Section 2.3.2), or nally
an integral over a general space of light paths (Section 2.3.3).

Light transport satises a central symmetry condition, which states that the role of
light source and sensor can be exchanged without changing the actual measurement.
We briey remark on this in Section 2.3.4.

2.3.1 Solid angle formulation

Measurement. We use the measurement equation by Nicodemus [51] to compute the
nal pixel values 𝐼1, . . . , 𝐼𝑛 in an image. In particular, the value9 of pixel 𝑘 is

𝐼𝑘 =

∫
M

∫
S2
𝑊
(𝑘)
e (x,𝝎) 𝐿i(x,𝝎) dΩ⊥x (𝝎) d𝐴(x) (2.47)

which is a product integral of the incident radiance 𝐿i arriving at a sensor position x from
direction𝝎 times the importance function𝑊 (𝑘)

e . The importance describes the sensitivity
9This is a scalar quantity that results in monochromatic images. Alternatively, we can solve for multiple
independent color channels or wavelengths here.
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prole of pixels on the lm of the simulated sensor and depends on the sensor’s optical
system. As a result, we are integrating over both incident directions and sensor positions,
though𝑊 (𝑘)

e is usually non-zero for only a small region around a given pixel 𝑘 .

Transport. Like previously mentioned in Section 2.1.2, radiance stays constant along
a ray of light, assuming there is no blocking obstacle or volumetric interaction. This
means that we can easily convert between incident and outgoing radiance at two points
using the transport equation

𝐿i(x,𝝎) = 𝐿o(r(x,𝝎),−𝝎). (2.48)

Here, r(x,𝝎) is the ray tracing operator that returns the closest surface position found
along a ray with origin x pointing in direction 𝝎.

Scaering. The way light scatters on surfaces follows an energy balance equation be-
tween emission, absorption, or reection/refraction based on the BSDF. From the earlier
denition of the BSDF (2.13) we can directly derive the scattering equation by rearrang-
ing terms and then integrating over solid angles:

𝑓𝑠 (x,𝝎i→𝝎o) =
d𝐿o(x,𝝎o)

𝐿i(x,𝝎i) |cos𝜃 i | dΩ(𝝎i)
⇔

𝑓𝑠 (x,𝝎i→𝝎o) 𝐿i(x,𝝎i) |cos𝜃 i | =
d𝐿o(x,𝝎o)
dΩ(𝝎i)

⇔∫
S2

𝑓𝑠 (x,𝝎i→𝝎o) 𝐿i(x,𝝎i) |cos𝜃 i | dΩ(𝝎i) = 𝐿o(x,𝝎o) (2.49)

This yields the famous rendering equation byKajiya [52]where an added term𝐿e captures
any emitted radiance directly at the surface interaction, and integration now takes place
in the projected solid angle measure:

𝐿o(x,𝝎o) = 𝐿e(x,𝝎o) +
∫
S2

𝑓𝑠 (x,𝝎i→𝝎o) 𝐿i(x,𝝎i) dΩ⊥x (𝝎i). (2.50)

This makes intuitive sense: the outgoing radiance in direction 𝝎o is the sum of directly
visible emission 𝐿e at x and all incident radiance visible from that point weighted by the
BSDF. The eect of this product integral is visualized in Figure 2.16.

Another common formulation uses the transport equation (2.48) to substitute the
incident radiance inside the integral with another outgoing radiance term:

𝐿o(x,𝝎o) = 𝐿e(x,𝝎o) +
∫
S2

𝑓𝑠 (x,𝝎i→𝝎o) 𝐿o(r(x,𝝎i),−𝝎i) dΩ⊥x (𝝎i). (2.51)
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Figure 2.16: The radiance that a scene location reflects towards the camera can be computed with the

rendering equation: a product integral involving the BSDF at that point and the incident radiance. We

illustrate this for two points in the Cornell box scene with glossy (top) or diuse (boom)materials. We

visualize the upper hemispheres of the spherical functions (relative to the surface normal) projected onto

the disk.

This reveals that the rendering equation has a self-referential form10, meaning each ra-
diance term inside the integral is again the result of the same integral.

This observation is the basis of many solution techniques to light transport that we
will discuss in Section 2.5.

2.3.2 Area formulation

Integrals often admit equivalent parameterizations on other domains, which can bemore
convenient from a numerical or computational point of view. One such example is ac-
counting for the reected radiance due to an emissive area light (Section 2.5.1) where it
is more appropriate to directly integrate over its surface.

This is also known as the three-point form of the rendering equation

𝐿(x′→x) = 𝐿e(x′→x) +
∫
M

𝑓𝑠 (x′′→x′→x) 𝐿(x′′→x′)𝐺 (x′↔x′′) d𝐴(x′′), (2.52)

where all terms are parameterized based on surface positions and, similarly to the pre-
vious denition of the BSDF, the arrows “→” denote the direction of light ow. More
precisely, the radiance and BSDF are rewritten as 𝐿(x→ y) := 𝐿o(x,𝝎) with (normal-
ized) vector 𝝎 =

−→xy and 𝑓𝑠 (x→y→z) := 𝑓𝑠 (y,𝝎i→𝝎o) with 𝝎i := −→yx and 𝝎o := −→yz. See
also the diagram in Figure 2.17.

The geometric term 𝐺 is a symmetric function that combines a visibility function11

10To be precise, it is a Fredholm integral equation of the second kind.
11This was not necessary in the previous solid angle formulation because it was encoded implicitly via
the ray tracing step in the transport equation.
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Figure 2.17: Geometric configuration of the rendering equation in its three-point form. The geometric

term 𝐺 (x′↔x′′) captures the relative orientation (𝜃 ′, 𝜃 ′′) and squared distance between x′, x′′.

𝑉 (x′↔x′′), which evaluates to 1 in case x′ and x′′ are mutually visible and 0 otherwise,
and a conversion factor between the projected solid angle and area measures

𝐺 (x′↔x′′) = 𝑉 (x′↔x′′)

������ dΩ⊥x′ (
−−−→
x′x′′)

d𝐴(x′′)

������
= 𝑉 (x′↔x′′) |cos𝜃

′| |cos𝜃 ′′|
‖x′ − x′′‖2 . (2.53)

As shown in the diagram, 𝜃 ′ and 𝜃 ′′ refer to the angles between the light direction and
the surface normals at positions x′ and x′′ respectively.

Exactly the same change of variables can also be applied to the measurement equa-
tion

𝐼𝑘 =

∫
M2

𝑊
(𝑘)
e (x′→x) 𝐿(x′→x)𝐺 (x↔x′) d𝐴(x′) d𝐴(x), (2.54)

this time using𝑊 (𝑘)
e (x→y) :=𝑊

(𝑘)
e (y,𝝎) with 𝝎 =

−→yx.

2.3.3 Path integral formulation

The path space integral formulation introduced by Veach [7], is particularly useful when
designing more advanced light transport algorithms. Instead of computing nested in-
tegrals over solid angles or surface areas, we directly integrate over full light transport
paths connecting sensors and light sources. A light path here refers to a sequence of
straight line segments representing a possible trajectory of light. We dene the set of all
light paths of length 𝑛 (meaning 𝑛 path segments and 𝑛 + 1 vertices) as

P𝑛 := {x0 . . . x𝑛 | x0, . . . , x𝑛 ∈ M} , (2.55)

where the starting vertex x0 is a sensor position and the last vertex x𝑛 lies on a light
source as shown in Figure 2.18.
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Figure 2.18: An example light path x̄ = x0 . . . x𝑛 of length 𝑛. We use the convention that the initial vertex

x0 is located on the sensor whereas the last vertex x𝑛 lies on a light source.

Path space P is then the union of all sets representing paths of any length:

P =

∞⋃
𝑛=1
P𝑛 (2.56)

and we use overlined symbols x̄ = x0 . . . x𝑛 ∈ P to denote entire light paths.
Starting with the measurement equation (2.54) and recursively expanding the radi-

ance term using the rendering equation (2.52) we arrive at an innite sum of integrals
of increasing dimensionality that corresponds to the number of light bounces through
the scene:

𝐼𝑘 =

∫
M2

𝐿e(x1→x0)𝐺 (x0↔x1)𝑊 (𝑘)
e (x1→x0) d𝐴(x1) d𝐴(x0)

+
∫
M3

𝐿e(x2→x1)𝐺 (x1↔x2) 𝑓𝑠 (x2→x1→x0)

·𝐺 (x0↔x1)𝑊 (𝑘)
e (x1→x0) d𝐴(x2) d𝐴(x1) d𝐴(x0)

+ . . .

=

∞∑︁
𝑗=1

∫
M 𝑗+1

𝐿e(x 𝑗→x 𝑗−1)𝐺 (x 𝑗−1↔x 𝑗 )
[
𝑗−1∏
𝑖=1

𝑓𝑠 (x𝑖+1→x𝑖→x𝑖−1)𝐺 (x𝑖−1↔x𝑖)
]

·𝑊 (𝑘)
e (x1→x0) d𝐴(x 𝑗 ) . . . d𝐴(x0). (2.57)

Alternatively, this can be cast into a more concise notation

𝐼𝑘 =

∫
P
𝑓 (𝑘) (x̄) d𝜇 (x̄), (2.58)

where 𝑓 is the path contribution and d𝜇 (x̄) refers to the product measure derived from
the area measures d𝐴(x) overM.

The contribution for a given light path x̄ is then

𝑓 (𝑘) (x̄) = 𝑓 (𝑘) (x0 . . . x𝑛) = 𝐿e(x𝑛→x𝑛−1)𝑇 (x̄)𝑊 (𝑘)
e (x1→x0) (2.59)
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Figure 2.19: The light path contribution is the product of emied radiance 𝐿e, BSDF values 𝑓𝑠 , geometric

terms 𝐺 , and the sensor importance𝑊e.

where the path throughput is dened as

𝑇 (x̄) = 𝐺 (x𝑛−1↔x𝑛)
[
𝑛−1∏
𝑖=1

𝑓𝑠 (x𝑖+1→x𝑖→x𝑖−1)𝐺 (x𝑖−1↔x𝑖)
]
. (2.60)

Figure 2.19 shows the individual path contribution terms for a simple (length 3) light
path x̄ = x0x1x2x3 through a scene.

We will revisit the path space formulation later in Section 3.1.1 in the context of
specular light paths where at least one of the path vertices is associated with a purely
specular reective or refractive BSDF involving a Dirac delta distribution.

2.3.4 Symmetry of light transport

When examining the terms in Equations (2.59) and (2.60) we realize they are all sym-
metric with respect to the direction of light ow, with a few notable exceptions where
the BSDF terms 𝑓𝑠 are non-symmetric:

1. As discussed earlier, refractive BSDFs are only reciprocal when adding another
scaling factor (2.32) related to the indices of refraction.

2. The use of shading normals that deviate from the true object geometry can also
break symmetry. Veach [7] describes this in more details and outlines the neces-
sary scaling factors to avoid the issue.

3. Simulating eects like polarization or uorescence involves generalized forms of
the BSDF that are inherently non-symmetric [53].

Apart from these cases, the pixel intensity 𝐼𝑘 will be unchanged when exchanging the
sensor and light source [17]. This means we can equivalently view the importance𝑊 (𝑘)

e
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(b) Flow of importance(a) Flow of radiance

Figure 2.20: There are two symmetric interpretations of light transport. (a) Radiance is emied from light

sources and is eventually received by a sensor. (b) Importance is emied from a sensor and received by

light sources.

as an “emitted”12 quantity that is sent out into the scene from the camera, see Figure 2.20.
Importance then scatters the same as radiance, until it is eventually “received” by a light
source. We can therefore, analogously to Section 2.3.1, dene the relevant light transport
equations based on an energy balance between incident and outgoing importance𝑊i,𝑊o:

Measurement: 𝐼𝑘 =

∫
M

∫
S2

𝐿e(x,𝝎)𝑊i(x,𝝎) dΩ⊥x (𝝎) d𝐴(x) (2.61)

Transport:𝑊i(x,𝝎) =𝑊o(r(x,𝝎),−𝝎) (2.62)

Scattering:𝑊o(x,𝝎o) =𝑊e(x,𝝎o) +
∫
S2

𝑓𝑠 (x,𝝎o→𝝎i)𝑊i(x,𝝎i) dΩ⊥x (𝝎i) (2.63)

Not only is this symmetry exploited by many ecient rendering techniques (Sec-
tion 2.5.4) but we will later see that a very similar idea is the key for designing ecient
dierentiable rendering techniques in the context of inverse rendering (Section 4.1.2).

12The subscript “e” is in fact chosen to convey this other role as an emitted quantity.
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2.4 Monte Carlo integration

As alluded to previously, most rendering techniques used today rely at least partially
on Monte Carlo (MC) integration methods. As this is a randomized simulation process,
it is appropriate to rst briey review the basics of probability theory and statistics in
Section 2.4.1. We then introduce the basic Monte Carlo estimator in Section 2.4.2 which
approximates a given integration problem stochastically. While it determines the true
value of the integral in expectation, the result is is contaminated by additional variance.
We therefore also discuss some of the most well known variance reduction techniques
from the Monte Carlo literature in Sections 2.4.3 to 2.4.6.

2.4.1 Basics of probability theory

We limit ourselves to a concise summary of the probability theory concepts that are
relevant for the remainder of Section 2.4. For a more thorough introduction to the topic,
and the related measure theory, see for example Billingsley [54].

Cumulative distribution and probability density functions. The cumulative dis-

tribution function (CDF) of a random variable 𝑋 ∈ X is

𝑃 (D) = Prob{𝑋 ∈ D}, (2.64)

i.e. the probability that 𝑋 lies in a measurable subset 𝐷 ⊂ X. By taking the Radon-

Nikodym derivative we then arrive at

𝑝 (x) = d𝑃
d𝜇
(x), (2.65)

which is the probability density function (PDF) associated with the CDF. Equivalently,
this can be viewed as the function that gives back 𝑃 (D) when integrating it over D:

𝑃 (D) =
∫
D
𝑝 (x) d𝜇 (x). (2.66)

The denition of the PDF is thus tightly coupled with a corresponding measure
d𝜇 (x). In simple euclidean spaces R𝑛 , this can be understood as measuring length (X =

R), area (X = R2), or volumes (X = R3), but generalizations also exist for other spaces.
An important space for dening probability densities in rendering is the unit sphere
(X = S2) with the associated solid angle measure encountered already in Section 2.1.1.
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Expected value and variance of random variables. If the random variable 𝑋 is
distributed according to density 𝑝 (x), the expected value or mean of any function 𝑓 (𝑋 )
is dened as the integral

E[𝑓 (𝑋 )] =
∫
X
𝑓 (x) 𝑝 (x) d𝜇 (x). (2.67)

Similarly, its variance is given as another integral

Var[𝑓 (𝑋 )] =
∫
X
(𝑓 (x) − E[𝑓 (𝑋 )])2 𝑝 (x) d𝜇 (x)

= E[(𝑓 (x) − E[𝑓 (𝑋 )])2], (2.68)

where sometimes also the standard deviation or root mean square error 𝜎 [𝑋 ] =
√︁
Var[𝑋 ]

is used.
The expected value is a linear operator, meaning it satises

E[𝑎 𝑋 + 𝑏 𝑌 ] = 𝑎 E[𝑋 ] + 𝑏 E[𝑌 ] (2.69)

for any two random variables 𝑋,𝑌 and constants 𝑎, 𝑏. Note that, only when 𝑋 and 𝑌 are
independent variables, the additional relation E[𝑋 · 𝑌 ] = E[𝑋 ] · E[𝑌 ] holds.

It is also worth mentioning a few counterexamples where an expectation does not
commute with a nonlinear transformation:

E[1/𝑋] ≠ 1/E[𝑋 ] (2.70)

E[exp(𝑋 )] ≠ exp(E[𝑋 ]). (2.71)

The variance does not behave linearly but instead we have the simple rule

Var[𝑎 𝑋 + 𝑏 𝑌 ] = 𝑎2 Var[𝑋 ] + 𝑏2 Var[𝑌 ] + 2𝑎𝑏 Cov[𝑋,𝑌 ], (2.72)

where the covariance is dened as

Cov[𝑋,𝑌 ] = E[(𝑋 − E[𝑋 ]) (𝑌 − E[𝑌 ])] . (2.73)

With the identities above, we can also rewrite the denition of variance as a more con-
venient expression

Var[𝑋 ] = E[𝑋 2] − E[𝑋 ]2. (2.74)
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Joint, marginal, and conditional probability densities. Given two random vari-
ables 𝑋 ∈ X and 𝑌 ∈ Y with measures d𝜇𝑋 (x), d𝜇𝑌 (y), their joint density 𝑝 (x, y) is
dened such that its integral gives the probability that (𝑋,𝑌 ) ∈ D for someD ⊂ X×Y:

𝑃 (D) = Prob{(𝑋,𝑌 ) ∈ D} =
∫
D
𝑝 (x, y) d𝜇𝑋 (x) d𝜇𝑌 (y). (2.75)

When working with multivariate distributions we often also care about a marginal dis-

tribution

𝑝 (x) =
∫
Y
𝑝 (x, y) d𝜇𝑌 (y), (2.76)

where the integration over one of the function arguments is referred to as marginal-

ization. The conditional density gives the density of 𝑌 given some known realization of
𝑋 :

𝑝 (y | x) = 𝑝 (x, y)
𝑝 (x) . (2.77)

In case of independent 𝑋 and 𝑌 this simplies to 𝑝 (y | x) = 𝑝 (y) and we thus have
𝑝 (x, y) = 𝑝 (x) · 𝑝 (y).

2.4.2 Monte Carlo estimator

The core goal of Monte Carlo integration [55, 56, 57] is the computation of an integral

𝐼 =

∫
X
𝑓 (x) d𝜇 (x) (2.78)

of the function 𝑓 (x)with x ∈ X. Inmany cases, the function 𝑓 is not amenable to analytic
approaches, and we must resort to numerical approximation. Monte Carlo methods in
particular achieve this in a stochastic way: the integral is sampled at various random
locations and the corresponding integrand values are aggregated into an estimate of
the true integral. This is another random variable that matches the true integral 𝐼 in
expectation, but is subject to some variance.

The most basic one-sample Monte Carlo estimator is given by

〈𝐼 〉 = 𝑓 (x)
𝑝 (x) , (2.79)

where sample x is drawn from the density 𝑝 (x) and the ratio 𝑓 (x)/𝑝 (x) is required to be
nite whenever 𝑓 (x) ≠ 0. It is easy to see that the expected value of this is then indeed
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the desired integral:

E [〈𝐼 〉] = E
[
𝑓 (x)
𝑝 (x)

]
=

∫
X

𝑓 (x)
𝑝 (x) 𝑝 (x) d𝜇 (x)

=

∫
X
𝑓 (x) d𝜇 (x)

= 𝐼 . (2.80)

In practice, we will mostly rely on the multi-sample estimator

〈𝐼 〉𝑁 =
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (x𝑖)
𝑝 (x𝑖)

, (2.81)

which is simply the average of 𝑁 separate realizations of Equation (2.79). Note that the
samples x𝑖 are usually assumed to be statistically independent of each other, though
sample stratication or low-discrepancy sequences [55, 56, 57] can be eective ways to
lower variance in many applications, including rendering.

To understand the general convergence rate of Equation (2.81), i.e. how quickly the
estimation error goes down when increasing 𝑁 , we can analyze the estimator variance

Var [〈𝐼 〉𝑁 ] = Var

[
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (x𝑖)
𝑝 (x𝑖)

]
=

1
𝑁 2

𝑁∑︁
𝑖=1

Var
[
𝑓 (x𝑖)
𝑝 (x𝑖)

]
=

1
𝑁
Var

[
𝑓 (x)
𝑝 (x)

]
, (2.82)

which gives us an expression of the root mean square error

𝜎 [〈𝐼 〉𝑁 ] =
1
√
𝑁
𝜎

[
𝑓 (x)
𝑝 (x)

]
. (2.83)

The variance and error therefore decrease with rates of 𝑂 (1/𝑁 ) and 𝑂 (1/√𝑁 ) respec-
tively. This is generally considered to be quite slow (the number of samples needs to be
quadrupled in order to reduce the error by half), especially compared to simpler quadra-
ture techniques that can converge much more rapidly in low-dimensional 1D or 2D set-
tings. However, a big advantage of Monte Carlo integration is that its convergence rate
does not suer from the “curse of dimensionality” and does not scale with the dimen-
sion of the problem13. We will see later that rendering can be interpreted as solving an
13Technically, there are some regularity conditions on the integrand for this to hold, see Donoho [58].
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innite-dimensional integral which makes Monte Carlo the only suitable choice.

The standard Monte Carlo estimator is known to be unbiased because, as shown
above, its expected value matches the true value of the integral:

Bias [〈𝐼 〉] = E [〈𝐼 〉] − 𝐼 = 0. (2.84)

We will later also see occurrences of biased estimators where this is not the case. In
practice, some bias can be acceptable, especially when the estimator is also consistent,
meaning its approximation error tends to zero with probability one when increasing the
number of samples:

lim
𝑁→∞

Prob {𝐼 − 〈𝐼 〉𝑁 = 0} = 1. (2.85)

See Hachisuka [59] for a simple overview on bias and consistency specically in
computer graphics that also includes a discussion of common misconceptions.

When the integration domain is the unit-hypercube [0, 1)𝑑 , we commonly use a uni-
form sampling density 𝑝 (x) = 1. Then, Equation (2.81) simplies to

〈𝐼 〉(uniform)
𝑁

=
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (x𝑖). (2.86)

We can considerably reduce the estimator variance however when adapting 𝑝 (x) to the
integrand, a concept known as importance sampling14.

2.4.3 Importance sampling

Let us consider an idealized estimator where we sample based on a density function
𝑝 that is proportional to 𝑓 up to a constant scale 𝑐 to ensure the density is properly
normalized:

𝑝 (x) = 𝑐 · 𝑓 (x). (2.87)

The estimate after taking a single sample is then simply a constant value with zero vari-
ance:

〈𝐼 〉 = 𝑓 (x)
𝑝 (x) =

𝑓 (x)
𝑐 · 𝑓 (x) =

1
𝑐
. (2.88)

14There is an unfortunate overlap here between terminology of importance sampling and the previously
encountered importance function in Section 2.3.1 that denes a camera sensor response.
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Figure 2.21: Top: Illustration of importance sampling a 1D function 𝑓 (𝑥) using three dierent sampling

densities 𝑝 (𝑥). Boom: The resulting sample weights 𝑓/𝑝 (red line) and its maximum value (dashed

black line). Le: Poorly chosen 𝑝 which results in large variance. Middle: Uniform sampling. Right:
Well chosen 𝑝 that causes 𝑓/𝑝 to be more constant and thus produces lower variance.

Though this is great in theory, unfortunately the task of nding the right constant 𝑐 in
this case of course requires us to compute the same integral we wanted to compute in
the rst place:

𝑐 =
1∫

X 𝑓 (x) d𝜇 (x)
. (2.89)

Nonetheless, this insight gives us a clear objective to keep variance minimal: the sam-
pling density 𝑝 should match 𝑓 as closely as possible in order for the sample weights
𝑓/𝑝 to be as constant as possible. We illustrate this idea in Figure 2.21 for three dierent
densities 𝑝 .

This previous observation implicitly assumed the integrand 𝑓 to be positive valued
but unfortunately it does not apply to signed functions. Even a sampling density 𝑝 that is
perfectly proportional to the absolute value |𝑓 (x) | will still exhibit potentially high vari-
ance due to sign changes in the estimate. While this is usually not a concern in forward
rendering techniques (there is no “negative light” in physically based light transport),
this can be a serious problem for dierentiable rendering methods where the derivatives
of the rendering process cause the integrand to also have negative parts. Specialized
techniques exist for this more general case [57].

We now turn to a question that we completely glossed over so far: how can we
actually generate samples from a given probability density function? In rendering, there
are three main approaches that we will discuss in turn.
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Probability density Cumulative density

Figure 2.22: Inverse transform sampling generates samples 𝑥1, 𝑥2, 𝑥3 from the PDF 𝑝 (𝑥) (le) by mapping

uniform variates 𝑢1, 𝑢2, 𝑢3 through the inverse of the corresponding CDF 𝑃 (𝑥) (right).

Inverse transform sampling. This process, also known as inversion method [60]
samples from a target density 𝑝 (x) with 𝑑 dimensions in three steps:

1. Compute the corresponding CDF 𝑃 (x) from 𝑝 (x) via integration.

2. Invert the function to arrive at the transformation x = 𝑇 (u) = 𝑃−1(u)

3. Evaluate 𝑇 (u), that maps a uniformly random sample u in U = [0, 1)𝑑 through
the inverse transform.

The correctness of the method follows directly from the denition of the CDF (2.64). For
example, the 1D CDF of a random variable 𝑋 on R is

𝑃 (𝑥) = Prob {𝑋 ≤ 𝑥} (2.90)

and the transformed variable 𝑇 (𝑈 ), with 𝑈 drawn uniformly from [0, 1), has CDF 𝑃 (𝑥)
as well:

Prob {𝑇 (𝑈 ) ≤ 𝑥} = Prob
{
𝑃−1(𝑈 ) ≤ 𝑥

}
= Prob {𝑈 ≤ 𝑃 (𝑥)} = 𝑃 (𝑥). (2.91)

This process is visualized in Figure 2.22. Note that the method also works in higher
dimensions. For a 2D distribution 𝑝 (𝑥,𝑦) for instance, we can rst sample from the
marginalized density 𝑝 (𝑥), followed by sampling the conditional density 𝑝 (𝑦 | 𝑥).

When using the inversionmethod for importance sampling duringMonte Carlo inte-
gration, the above steps can also be understood as a change of variables of the target inte-
gral, where we switch from the integration domainX to the unit-hypercubeU = [0, 1)𝑑

of matching dimension 𝑑 :

𝐼 =

∫
X
𝑓 (x) d𝜇 (x) =

∫
U
𝑓 (𝑇 (u)) |𝐽𝑇 (u) | d𝜇 (u) =

∫
U

𝑓 (𝑇 (u))
𝑝 (𝑇 (u)) d𝜇 (u). (2.92)
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Accepted sample
Rejected sample

Figure 2.23: Illustration of the rejection sampling process on a 1D example. Le: We want to generate

samples from a PDF 𝑝 (𝑥) by sampling an auxiliary density 𝑞(𝑥) where 𝑝 (𝑥) is bounded from above by

𝑐 · 𝑞(𝑥) for some constant 𝑐 . Right: Points (𝑥𝑖 , 𝑦𝑖 ) where 𝑥𝑖 are sampled according to 𝑞(𝑥) and 𝑦𝑖 are

uniformly sampled between 0 and 𝑐 ·𝑞(𝑥𝑖 ). We only accept samples that fall below the 𝑝 (𝑥) curve (green),
whose x-coordinate are then distributed according to 𝑝 (𝑥).

Here, the Jacobian determinant |𝐽𝑇 (u) | is necessary to account for the expansion (or con-
traction) of space and is exactly 1/𝑝 (x). This should be no surprise, as this results again
in the the standard Monte Carlo estimator from Equation (2.79) with samples u drawn
uniformly at random.

Inverse transform sampling is used extensively in rendering due to its simplicity and
eciency. The mapping 𝑇 uses a xed number of random numbers, is usually ecient
to evaluate, and preserves potential sample stratication. However, it is not able to
sample from distributions where the CDF is not available in analytic form (step 1 above).
Similarly, the CDF inversion (step 2) can be problematic in practice, though it can be
performed numerically (e.g. with root-nding methods) or circumvented entirely using
other clever observations [61].

Rejection sampling. This method was introduced by Neumann [62] and can in prin-
ciple sample from arbitrary target densities 𝑝 (x), even if e.g. the inversion method is
not applicable. Interestingly, there is also no requirement that 𝑝 is normalized so it is
sucient if we can evaluate it up to some unknown scale factor.

As suggested by its name, there is however the downside that a number of auxiliary
samples might need to be rejected before a single sample distributed according to 𝑝 can
be returned from the process.
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A sample x, distributed according to 𝑝 (x) is generated in the following way:

1. Generate a proposal x′ drawn from an auxiliary distribution𝑞(x) that we can easily
sample from. We also need a constant 𝑐 such that 𝑐 · 𝑞(x) is an upper bound of
𝑝 (x).

2. Generate a uniform 1D variable 𝑢 drawn from [0, 1).

3. Accept the proposal x′ as a sample of 𝑝 (i.e. return x = x′) if 𝑢 ≤ 𝑝 (x′)
𝑐 ·𝑞(x′) . Otherwise,

reject the proposal and restart at step 1.

Figure 2.23 gives the intuition of why this method works on a simple 1D example. The
proposed samples essentially lie in the 2D space with their 𝑥-value distributed according
the the auxiliary density, and their 𝑦-value drawn uniformly between 0 and 𝑐 ·𝑞(𝑥). The
accepted samples then all lie below the target density with their 𝑥-values distributed
proportionally to 𝑝 (𝑥).

Note that the number of attempts before a successful sample is returned is unbounded,
but equal to the constant 𝑐 in expectation. This means, the eciency of rejection sam-
pling directly depends on how well chosen the upper bound is. Unfortunately it can be
hard in practice to nd an auxiliary density that is both a tight upper bound and that
can be sampled easily. Compared to the inverse transform sampling, rejection sampling
is incompatible with structured and low-discrepancy point sets.

Markov chain Monte Carlo. Another general technique that can sample from ar-
bitrary target densities is the Metropolis-Rosenbluth-Hastings algorithm [63, 64] in the
larger class of Markov chain Monte Carlo (MCMC) methods [56, 65].

A Markov chain is a sequence of random variables x1, x2, x3, . . . in some state space
(e.g. R) where the value of the next variable is determined via a (randomized) mutation

or perturbation strategy, i.e. by sampling from a transition density 𝑇 (x→ x′). Markov
chains are “memory-less” because a mutation is only allowed to depend on the current
state x of the sequence and the history of all previous states is “forgotten” after each
mutation.

If these transitions fulll relatively mild conditions15, the Markov chain will con-
verge to a unique stationary distribution after some nite warm-up period. After that,
subsequent states x𝑖 are valid samples from that distribution.
15The Markov chain needs to be ergodic, meaning there needs to be a non-zero probability that each
possible x′ can be reached from any other x (after potentially many steps), and there cannot be any set
of states that are visited regularly. See Meyn and Tweedie [65] for details.

44



Chapter 2. Background

The key observation that leads to the Metropolis-Rosenbluth-Hastings algorithm is
that a Markov chain can be constructed in a way that converges to a specic stationary
distribution

𝑝 (x) = 𝑔(x)∫
X 𝑔(x) d𝜇 (x)

, (2.93)

where the normalization constant can be unknown. This is achieved by introducing an
additional step at each mutation: similarly to rejection sampling, each new state is only
accepted with a specic probability

𝑎(x→x′) = min
{
1,
𝑔(x′)𝑇 (x′→x)
𝑔(x)𝑇 (x→x′)

}
. (2.94)

Concretely, the process to determine the next sample x𝑖+1 from x𝑖 is:

1. Generate a proposal x′ drawn from the transition density 𝑇 (x𝑖→x′).

2. Accept the sample, i.e. set x𝑖+1 = x′, with probability 𝑎(x𝑖→x′). Otherwise, reject
the sample, i.e. repeat the previous sample and set x𝑖+1 = x𝑖 .

This simple method can be eective in cases where sampling from complex distributions
would otherwise be prohibitively expensive. However, even though this will produce
samples that are distributed proportionally to 𝑝 (𝑥), samples can be highly correlated
with each other, which can harm Monte Carlo convergence in practice.

2.4.4 Multiple importance sampling

It can be very challenging to design a sampling technique that is well-suited for a com-
plex integrand 𝑓 (x). However, it is often possible to nd a set of simpler sampling den-
sities 𝑝 𝑗 (x) ( 𝑗 = 1, . . . , 𝑀) that only target parts of it like in the 1D example shown in
Figure 2.24 (left).

While each individual estimator 𝑓 (x)/𝑝 𝑗 (x) can cause high variance, a natural question
is if we can somehow turn these into a unied sampling technique that combines their
individual strengths. At rst this is not obvious. For instance, a naïve average of two
estimators

〈𝐼 〉(avg.) = 1
2

(
𝑓 (x1)
𝑝1(x1)

+ 𝑓 (x2)
𝑝2(x2)

)
(2.95)

is often ineective because variance is additive:

Var
[
〈𝐼 〉(avg.)

]
=
1
4

(
Var

[
𝑓 (x1)
𝑝1(x1)

]
+ Var

[
𝑓 (x2)
𝑝2(x2)

] )
. (2.96)
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Probability densities Balance heuristic weights Power heuristic weights

Figure 2.24: Illustration of multiple importance sampling in 1D. Le: Three sampling densities 𝑝1, 𝑝2, 𝑝3

that are designed to target dierent areas of the integrand 𝑓 . Middle: The correspondingmultiple impor-

tance sampling weights𝑤1,𝑤2,𝑤3 computed from the balance heuristic. Right: The same situation again

but using the power heuristic with 𝛽 = 2 instead, which gives higher weights to individual strategies.

The right approach is to use a weighted average with weights 𝑤 𝑗 (x) that can locally
give higher priority to sampling techniques that work well while downweighting others
that perform poorly. This concept is called multiple importance sampling (MIS) and was
introduced by Veach and Guibas [66]. The multi-sample MIS estimator is:

〈𝐼 〉 (MIS) =
𝑀∑︁
𝑗=1

1
𝑁 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑤 𝑗 (x 𝑗,𝑖)
𝑓 (x 𝑗,𝑖)
𝑝 𝑗 (x 𝑗,𝑖)

, (2.97)

where x 𝑗,𝑖 denotes the 𝑖-th sample generated from strategy 𝑗 , and a dierent number of
samples 𝑁 𝑗 can be allocated to each technique.

In order for Equation (2.97) to be an unbiased estimator of 𝐼 , the MIS weights𝑤 𝑗 are
required to satisfy the following two conditions:

1. They need to form a partition of unity on the non-zero regions of the integrand,
I.e.

∑𝑀
𝑗=1𝑤 𝑗 (x) = 1 for 𝑓 (x) ≠ 0.

2. If a strategy 𝑗 does not cover a subregion of the integration domain (𝑝 𝑗 (x) = 0 for
some x), the associated weight 𝑤 𝑗 (x) needs to be zero. I.e. 𝑤 𝑗 (x) = 0 whenever
the ratio 𝑓 (x)/𝑝 𝑗 (x) is not nite.

Interestingly, it is valid for MIS weights to be negative, and it was recently shown that
this is in fact necessary to nd optimal weights that minimize variance [67].

One way to arrive at Equation (2.97) is to partition the integral 𝐼 based on the weights

𝐼 =

∫
X
𝑓 (x) d𝜇 (x) =

∫
X

𝑀∑︁
𝑗=1

𝑤 𝑗 (x)︸     ︷︷     ︸
= 1

𝑓 (x) d𝜇 (x) =
𝑀∑︁
𝑗=1

∫
X
𝑤 𝑗 (x) 𝑓 (x) d𝜇 (x)︸                    ︷︷                    ︸

𝐼 𝑗

, (2.98)
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and then to estimate each integral 𝐼 𝑗 with the standard Monte Carlo estimator from
Equation (2.81).

Alternatively, we can also dene the one-sample MIS estimator

〈𝐼 〉 (MIS-1) =
𝑤𝑘 (x) 𝑓 (x)
P𝑘 · 𝑝𝑘 (x)

, (2.99)

where only a single sample from strategy 𝑘 is drawn after selecting one of the integrals
with a discrete probability 𝑃𝑘 .

The most popular instance of MIS weights in practice are dened via the balance

heuristic

𝑤 𝑗 (x) =
𝑁 𝑗 𝑝 𝑗 (x)∑𝑀

𝑘=1 𝑁𝑘 𝑝𝑘 (x)
, (2.100)

that is based on PDF ratios of the involved sampling techniques. We show in Fig-
ure 2.24 (middle) how this applies for the previous 1D example. A nice intuition behind
the balance heuristic is to interpret it as sampling from a (weighted) average of the in-
dividual PDFs. This can be seen by plugging Equation (2.100) into the multi-sample MIS
estimator and cancelling out some terms:

〈𝐼 〉 (Bal.) =
𝑀∑︁
𝑗=1

1
𝑁 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑤 𝑗 (x 𝑗,𝑖)
𝑓 (x 𝑗,𝑖)
𝑝 𝑗 (x 𝑗,𝑖)

=

𝑀∑︁
𝑗=1

1
𝑁 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑁 𝑗 𝑝 𝑗 (x 𝑗,𝑖))∑𝑀
𝑘=1 𝑁𝑘 𝑝𝑘 (x 𝑗,𝑖)

𝑓 (x 𝑗,𝑖)
𝑝 𝑗 (x 𝑗,𝑖)

=

𝑀∑︁
𝑗=1

𝑁 𝑗∑︁
𝑖=1

𝑓 (x 𝑗,𝑖)∑𝑀
𝑘=1 𝑁𝑘 𝑝𝑘 (x 𝑗,𝑖)

=
1
𝑁

𝑀∑︁
𝑗=1

𝑁 𝑗∑︁
𝑖=1

𝑓 (x 𝑗,𝑖)∑𝑀
𝑘=1 𝑐𝑘 𝑝𝑘 (x 𝑗,𝑖)

=
1
𝑁

𝑀∑︁
𝑗=1

𝑁 𝑗∑︁
𝑖=1

𝑓 (x 𝑗,𝑖)
𝑝 (x 𝑗,𝑖)

, (2.101)

where in the last two steps, 𝑁 is the number of total samples 𝑁 =
∑𝑀

𝑗=1 𝑁 𝑗 , the ratio
of samples allocated to each technique is 𝑐𝑘 = 𝑁𝑘/𝑁 , and 𝑝 (x) = ∑𝑀

𝑘=1 𝑐𝑘 𝑝𝑘 (x). In the
simple example of 𝑀 = 2, 𝑁1 = 𝑁2 = 1 this is just a standard Monte Carlo estimator
where samples are drawn based on the average of the two PDFs:

〈𝐼 〉 (Bal.) = 1
2

2∑︁
𝑗=1

𝑓 (x 𝑗,𝑖)
1
2
(
𝑝1(x 𝑗,𝑖) + 𝑝2(x 𝑗,𝑖)

) . (2.102)
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The balance heuristic is provably optimal in the case of the one-sample estimator
(2.99) though in general, better weights can be found [67]. A particularly simple exten-
sions that often produces lower variance is the power heuristic

𝑤 𝑗 (x) =
(𝑁 𝑗 𝑝 𝑗 (x))𝛽∑𝑀
𝑘=1(𝑁𝑘 𝑝𝑘 (x))𝛽

, (2.103)

where usually 𝛽 = 2 gives good results. We also illustrate these alternate weights in
Figure 2.24 (right).

As multiple importance sampling can lead to very robust estimators it has become
a key component behind most modern rendering techniques. It is also still an ongoing
direction of research. For instance, MIS can be extended to work on an space with a
continuous number of strategies [68], and improved weight heuristics can be designed
based on sample variance [69] or correlation [70].

2.4.5 Antithetic sampling

Another variance reduction strategy is antithetic sampling [71] which works by exploit-
ing correlation between generated samples. Written as an estimator it is

〈𝐼 〉(AS) = 1
𝑁

𝑁/2∑︁
𝑖=1

(
𝑓 (x𝑖)
𝑝 (x𝑖)

+ 𝑓 (x̃𝑖)
𝑝 (x̃𝑖)

)
, (2.104)

where the number of samples 𝑁 has to be even and x̃𝑖 is the antithetic sample to x𝑖 that
is usually placed symmetrically to x𝑖 in some way that creates cancellation between the
two averaged terms.

The variance of the estimator is:

Var
[
〈𝐼 〉(AS)

]
= Var

[
1
𝑁

𝑁/2∑︁
𝑖=1

(
𝑓 (x𝑖)
𝑝 (x𝑖)

+ 𝑓 (x̃𝑖)
𝑝 (x̃𝑖)

)]
=

1
𝑁 2

𝑁/2∑︁
𝑖=1

Var
[
𝑓 (x𝑖)
𝑝 (x𝑖)

+ 𝑓 (x̃𝑖)
𝑝 (x̃𝑖)

]
=

𝑁/2
𝑁

Var
[
𝑓 (x)
𝑝 (x) +

𝑓 (x̃)
𝑝 (x̃)

]
=

1
2𝑁

(
Var

[
𝑓 (x)
𝑝 (x)

]
+ Var

[
𝑓 (x̃)
𝑝 (x̃)

]
+ 2Cov

[
𝑓 (x)
𝑝 (x) ,

𝑓 (x̃)
𝑝 (x̃)

] )
. (2.105)

Compared to a standard Monte Carlo estimator, this can have signicantly lower vari-
ance in case of some anti-correlation between 𝑓 (x)/𝑝 (x) and 𝑓 (x̃)/𝑝 (x̃).
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Standard sample weightsIntegrand and density Antithetic sample weights

Figure 2.25: Illustration of antithetic sampling in 1D. Le: Integrand 𝑓 and uniform sampling density

𝑝 . Middle: The standard Monte Carlo sample weights 𝑓/𝑝 = 𝑓 . Right: Sample weights produced by

antithetic sampling. Note how they are much more constant due to cancellation, which will result in a

lower-variance estimate. Top: Monotonic function with antithetic samples 𝑥 = 1 − 𝑥 . Boom: Signed

function where 𝑥 are equal to 𝑥 flipped around the root 𝑥0 of the function.

A well known case where antithetic sampling is eective are (approximately) mono-
tonic functions. We show this in Figure 2.25 (top) on a 1D function 𝑓 (𝑥) in X = [0, 1).
There, the function value decreases as 𝑥 increases, so we use antithetic samples 𝑥 = 1−𝑥
to achieve a variance reduction.

Another case where antithetics can be benecial are signed integrals as shown in
Figure 2.25 (bottom). There is considerable potential for cancellation if we can sample
such that 𝑓 (x) ≈ −𝑓 (x̃). In the shown 1D example, we therefore choose the antithetic
sample 𝑥 as a mirrored version of 𝑥 around the root of the function.

Even though common integrands in forward rendering are strictly positive and only
rarely monotonic, antithetic sampling has been shown to improve variance in some
cases [72]. More recently, is proved to be a valuable technique for reducing variance
in dierentiable rendering scenarios where derivative integrals always exhibit positive
and negative regions [2, 73, 74] and we will revisit this later in Chapter 4.
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2.4.6 Control variates

A third common approach for variance reduction are control variates [55]. Here, we
rewrite the integral 𝐼 based on an auxiliary function𝑔(x) with a known analytic solution
to its integral 𝐺 =

∫
X 𝑔(x) d𝜇 (x):

𝐼 =

∫
X
𝑓 (x) d𝜇 (x)

∫
X
𝑓 (x) − 𝛽 𝑔(x) d𝜇 (x) + 𝛽 𝐺, (2.106)

where the constant 𝛽 controls how strongly the control variate is applied. The corre-
sponding estimator is therefore

〈𝐼 〉(CV) = 1
𝑁

𝑁∑︁
𝑖=1

𝑓 (x𝑖) − 𝛽 𝑔(x𝑖)
𝑝 (x𝑖)

+ 𝛽 𝐺, (2.107)

with variance

Var
[
〈𝐼 〉(CV)

]
= Var

[
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (x𝑖) − 𝛽 𝑔(x𝑖)
𝑝 (x𝑖)

+ 𝛽 𝐺
]

=
1
𝑁 2

𝑁∑︁
𝑖=1

Var
[
𝑓 (x𝑖) − 𝛽 𝑔(x𝑖)

𝑝 (x𝑖)

]
=

1
𝑁
Var

[
𝑓 (x)
𝑝 (x) − 𝛽

𝑔(x)
𝑝 (x)

]
=

1
𝑁

(
Var

[
𝑓 (x)
𝑝 (x)

]
+ 𝛽2 Var

[
𝑔(x)
𝑝 (x)

]
− 2𝛽 Cov

[
𝑓 (x)
𝑝 (x) ,

𝑔(x)
𝑝 (x)

] )
. (2.108)

Depending on the value of 𝛽 , the function 𝑔 should be either strongly correlated (for
𝛽 > 0) or anti-correlated (for 𝛽 < 0) with 𝑓 to achieve an overall variance reduction.

It is also possible for the integral 𝐺 to be an estimator itself, although this lowers
the eectiveness due to the additional randomness. This is known as multilevel Monte

Carlo [75].
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2.5 Rendering algorithms

We now discuss algorithms that solve the light transport problem by targeting the equa-
tions discussed in Section 2.3 using the Monte Carlo integration techniques from Sec-
tion 2.4. We will restrict ourselves to a high-level discussion and mainly cover their
strengths and weaknesses. For more complete descriptions and implementation details,
refer to Pharr et al. [8].

2.5.1 Direct illumination

Recall the measurement equation (2.47) from earlier:

𝐼𝑘 =

∫
M

∫
S2
𝑊
(𝑘)
e (x,𝝎) 𝐿o(r(x,𝝎),−𝝎) dΩ⊥x (𝝎) d𝐴(x). (2.109)

Direct application of the Monte Carlo estimator (2.79) gives

〈𝐼𝑘〉 =
𝑊
(𝑘)
e (x,𝝎) 𝐿o(r(x,𝝎),−𝝎)

𝑝 (x,𝝎) , (2.110)

which still requires a suitable sampling density 𝑝 (x,𝝎). Given that 𝐿o represents an
unknown and complicated function, it makes sense to only focus on the importance term
𝑊
(𝑘)
e . For basic cameramodels, this is a simple analytic expressionwith only a small non-

zero region around pixel 𝑘 . In case of a pinhole camera, we can for instance sample a
position x uniformly inside the pixel𝑘 and trace a ray from the pinhole through x into the
scene. This process is actually an ideal sampling scheme, and its PDF perfectly cancels
out the𝑊 (𝑘)

e term in the numerator. This only leaves 𝐿o, which is itself an integral:

𝐿o(x,𝝎o) = 𝐿e(x,𝝎o) +
∫
S2

𝑓𝑠 (x,𝝎i→𝝎o) 𝐿e(r(x,𝝎i),−𝝎i) dΩ⊥x (𝝎i). (2.111)

For simplicity, we replaced the 𝐿o term inside with just the emission term 𝐿e at the next
intersection, instead of the full recursive denition. This amounts to only considering
light paths with a maximum length of two, i.e. direct illumination. Unsurprisingly, we
then also estimate this integral with Monte Carlo:

〈𝐿o(x,𝝎o)〉 = 𝐿e(x,𝝎o) +
𝑓𝑠 (x,𝝎i→𝝎o)𝐿e(r(x,𝝎i),−𝝎i)

𝑝 (𝝎i)
. (2.112)

Here, the choice of sampling density is less obvious. Ideally, we would like to sample
proportionally to the full product 𝑓𝑠 · 𝐿e, but this is generally infeasible without making
strong assumptions on the incident illumination and the shading model [76, 77, 78].
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Sampling based on BSDF Sampling based on emitter

Figure 2.26: We can use two dierent strategies to importance sample the product integral of BSDF

(blue) and incident illumination (yellow). For both options, the drawings show the possible combinations

of small or large emiers, and specular or rough BSDFs. Le: BSDF sampling is eective in many cases

but struggles in cases of small light sources where directions sampled from rough BSDFs will oen miss

the lights. Right: Emier sampling has the benefit of easily connecting to small light sources, assuming

there is no occlusion. Directions generated due to large light sources on the other hand might miss the

important parts of the BSDF when the material is specular.

A simple workaround that is robust in most cases is to rely on two sampling tech-
niques, which are tailored to the 𝑓𝑠 and 𝐿e term individually, and then combined using
MIS from Section 2.4.4.

We briey discuss both strategies separately before looking at the combined MIS
estimator. See also the corresponding illustration in Figure 2.26.

BSDF sampling. This strategy attempts to sample (roughly) proportional to the co-
sine weighted16 BSDF 𝑓𝑠 (x,𝝎i→𝝎o) · cos𝜃 i using a density 𝑝 (BSDF) (𝝎i) that is implicitly
conditioned on the position x and direction𝝎o. Thanks to the signicant attention given
to BSDF sampling strategies in the last decades we now have access to very robust sam-
pling techniques for common cases such as microfacet BSDFs [79].

BSDF sampling is useful when the model is only non-zero on a small part of the unit
sphere. We essentially concentrate our sampling on those regions instead of tracing rays
in directions where the full product 𝑓𝑠 · 𝐿e is likely to be small.
16We usually factor the cosine of the projected solid angle measure dΩ⊥x (𝝎) into the BSDF term for the
purpose of importance sampling.
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On the other hand, if the BSDF is less concentrated, the sampled directions will be
spread out accordingly. This can cause high variance in presence of small light sources
as these will only be hit with a low probability.

Most rendering systems also support light sources that have an emission term which
include either a spatial or directional Dirac delta function. Common examples are point,
spotlight, or directional emitters. Rays generated from BSDF sampling cannot hit these
types of emitters at all because they represent only a zero measure direction on the unit
sphere.

Emier sampling. Alternatively, we can sample based on the incident illumination
𝐿e, a process also known as next event estimation. In its basic form, this entails sampling
an explicit endpoint x′ on the emitter (often with a uniform density on the emissive
surface) and explicitly ray tracing towards this point. For common light sources (such as
points, quads, spheres, ellipsoids, or environment maps), more sophisticated techniques
exist that more accurately account for the projected light source geometry and emission
prole.

While sample generation can fail in case of occluding geometry, this is a great strat-
egy for small light sources that would be dicult to nd using other sampling strategies.
The downside is that the BSDF term is now not taken into account at all which can also
cause high variance in case of specular materials. As a limit case, perfectly specular
BSDFs involving a Dirac delta function (Sections 2.2.3 and 2.2.4) are incompatible with
emitter sampling.

It should also be noted that virtual scenes might include a large number of light
sources. In fact, it is not uncommon for today’s production scenes to be lit by millions of
unique emitters. Choosing one of these to sample from is therefore also a challenge in
itself as often only a small subset contributes signicantly to the integrand at a position.
This was classically approached using simple heuristics [80, 81] whereas today, either
complex light hierarchies [82, 83] or importance resampling [84] are used.

Multiple importance sampling. Given how well the advantages and shortcomings
of these two techniques complement each other, their combination is a natural next step.
This observation led to the development of multiple importance sampling by Veach and
Guibas [66].

We revisit a well-known test scene from that publication here in Figure 2.27 to illus-
trate its eectiveness. It features a set of surfaces with increasing roughness from top to
bottom, as well as various emitter sizes. Rendering this test image with either of the two
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Figure 2.27: (a) Recreation of a well-known test scene by Veach and Guibas [66] involving surfaces of

varying roughness levels lit by light sources of dierent sizes. (b) BSDF sampling works well except for

cases with high roughness and small emiers (boom le). (c) Emier sampling is well-suited for that

region but struggles in the case of low roughness and large emiers (top right). (d) Combining both

strategies with MIS results in a robust estimate in all parts of the image. (e) A false color visualization

of the same scene that shows the MIS weights for the two strategies (blue: BSDF sampling, red: emier

sampling). (c–d) use 64 samples per pixel whereas (d) uses 32 samples for each of the two strategies in

order to make the comparison as fair as possible. All three renderings take roughly equal time.

proposed techniques has serious variance issues in two dierent regions of the image
that align with the discussions above, see Figure 2.27 (b–c). Only their combination via
MIS in Figure 2.27 (d) produces a robust estimate with overall low variance.

2.5.2 Path tracing

We now lift the previous limitation of only accounting for direct illumination and turn
to the full light transport problem, i.e. the rendering equation (2.51). This now includes
global illumination by simulating light paths of any length. See Figure 2.28 for an illus-
tration of how increasing path length aects the rendering of a simple test scene.

Kajiya’s seminal path tracing algorithm [52] is the most common solution approach
for this problem today. It starts out with the samemeasurement equation estimate (2.110)
from earlier but then recursively also estimates the series of nested integrals. Concretely,
a full light path x̄ = x0, x1, x2, . . . is generated by subsequently sampling a new direc-
tion (usually from the BSDF sampling density) followed by ray tracing to arrive at the
next path vertex. During the process, the method also tracks the current path through-
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Figure 2.28: Rendering of the Cornell box scene with increasing number of bounces. A path with length

𝑛 = 1 will only be able to connect directly visible lights to the camera. For rendering direct illumination

(as in Section 2.5.1), 𝑛 = 2 is suicient. A higher number of bounces (𝑛 ≥ 3) leads to the progressive

addition global illumination eects due to the interreflection of light.

put (2.60) and the nal radiance estimate is updated whenever the path encounteres an
emissive surface.

In practice, it is also a good idea to still rely on the MIS technique between BSDF
and emitter sampling at each path vertex. Because there is no simple way to sample
the indirect radiance arriving at a point, MIS usually still focuses solely on the directly
incident illumination whereas the indirect contribution is accounted for by the recursive
part of the estimator.

But how do we actually terminate this recursion? While the sampled light paths
might naturally stop eventually (e.g. due to absorption or after “missing” the scene geom-
etry completely and escaping into innity), there are many cases where there is potential
for an innite recursion. Manually setting a maximum number of computed bounces
will lead to energy loss and thus the estimator would be biased. The solution is a simple
modication called Russian Roulette which terminates long paths stochastically instead.

Consider one of the radiance estimates 〈𝐿〉 that includes a recursion. We can replace
this estimator with a modied version 〈𝐿〉 (RR) that only continues the recursion with a
continuation probability 𝑃𝑅 and scales the estimate accordingly:

〈𝐿〉 (RR) =

〈𝐿〉/𝑃𝑅, if 𝑢 < 𝑃𝑅

0, otherwise,
(2.113)

where 𝑢 is a uniform variate in [0, 1). This still has the same expected value

E
[
〈𝐿〉 (RR)

]
= 𝑃𝑅 · 〈𝐿〉/𝑃𝑅 + (1 − 𝑃𝑅) · 0 = 〈𝐿〉 (2.114)

and is thus unbiased. It is convenient to set 𝑃𝑅 adaptively based on the current path
throughput. This way, low energy paths are terminated with a higher probability which
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Figure 2.29: An illustration of the path tracing algorithm with multiple importance sampling. We start

tracing rays from the camera into the scene. At each shading point x𝑖 we perform MIS between BSDF

sampling (black arrow) and emier sampling (yellow arrow) that aempts to connect to a light source.

The path is then continued recursively by following the sampled direction from BSDF sampling (black

arrow).

saves computation that would not contribute much to the nal image.

The nal sequence of steps is illustrated in Figure 2.29. Note how the algorithm has
linear complexity in the number of bounces. In particular, the rays used for emitter sam-
pling (yellow arrows in the illustration) are only used to directly connect to lights and
there is no branching which would lead to exponential path growth.

Path tracing is hugely popular and is the default approach in almost all rendering
systems. This is mostly due to its favorable tradeos between simplicity, computational
eciency, and its robustness to many situations. However, one should recognize that
there are many types of scenes that are challenging—if not impossible—to render using
this method.

The default emitter sampling strategy tends to reach emitters that illuminate the
scene indirectly (i.e. via interreection) with too low a probability. They have to be
discovered mostly by BSDF sampling which can cause high variance in case the emitters
are spatially or directionally small.

Another issue is rendering of caustics, where light is either reected or refracted by
specular surfaces. This also “disables” emitter sampling and the only remaining option
is BSDF sampling. Even worse, if the emitter causing the caustic has a Dirac delta term
in its emission prole, no path tracing strategy can generate suitable samples, and the
caustic will be missing entirely from the rendered image.
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Figure 2.30: Light tracing works analogously to path tracing (Figure 2.29) but starts tracing rays from

light sources and tries to create an explicit connection to the camera at each bounce.

2.5.3 Light tracing

It might seem like we can resolve many of the problems with path tracing simply by
sampling paths starting from the light sources. The symmetry of light transport, as
discussed earlier in Section 2.3.4, makes this a perfectly valid approach. As shown in
Figure 2.30, the resulting algorithm, called light tracing, is almost equivalent to path
tracing. Rays are traced starting from the other end now but are still scattered based on
BSDF sampling at each bounce. Emitter sampling is replaced with “camera sampling”
where an explicit connection to the camera’s sensor plane is made and any potential
contribution is directly added to the corresponding image pixel.

Light tracing is a fairly robust estimate for directly visible caustics or emitters that
are hidden from the camera view. But similar to emitter sampling, camera sampling is
very ineective when connecting to the sensor from a highly specular BSDF, or even
invalid when the BSDF contains a delta distribution. Unfortunately, hitting the camera
randomly by scattering based on the BSDF is usually an even worse strategy because the
camera aperture is in most cases tiny or innitesimally small. Thus, there is no eective
strategy for directly visible specular objects, which is a severe limitation.

2.5.4 Bidirectional techniques

One option to circumvent the previously discussed problems is to switch to the path
space formulation of light transport (Section 2.3.3) with an estimator

〈𝐼 〉 = 𝑓 (x̄)
𝑝 (x̄) , (2.115)

where a light path x̄was constructed based on some arbitrary probability measure 𝑝 (x̄).
This opens the door to many more path construction strategies. A particularly popu-
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Figure 2.31: Bidirectional path tracing constructs light paths by tracing a length 𝑡 subpath from the

camera and a length 𝑠 subpath from the light sources. In total, this results in (𝑡 +1) · (𝑠 +1) possible paths.

lar class of approaches are bidirectional techniques, where paths are constructed from
both the camera and light source simultaneously. In principle, generalizations such as
tridirectional approaches [85] are also applicable in more specic use cases.

Bidirectional path tracing. Bidirectional path tracing (BDPT) [86, 87] is a well known
example that is regarded as being robust in many scenes. It generates a camera subpath
x0, x1, . . . , x𝑡 and a light subpath y0, y1, . . . , y𝑠 of lengths 𝑡 and 𝑠 respectively. From this,
we can construct (𝑡 + 1) · (𝑠 + 1) complete light paths by connecting one vertex from
each subpath as shown in Figure 2.31.

Conversely, this means each complete light path of length 𝑛 can be sampled with
𝑛 + 1 dierent strategies {(𝑡 = 0, 𝑠 = 𝑛), (𝑡 = 1, 𝑠 = 𝑛 − 1), . . . , (𝑡 = 𝑛, 𝑠 = 0)}. Depending
on the situation, only a subset of these will produce a good estimate, so they are usually
all combined using MIS:

〈𝐼 〉𝑀𝐼𝑆 =

𝑀∑︁
𝑗=1

𝑤 𝑗 (x̄)
𝑓 (x̄)
𝑝 𝑗 (x̄)

. (2.116)

All of this suggests a large computational overhead compared to the simpler unidirec-
tional algorithms. On simple scenes, BDPT is therefore often outperformed by path trac-
ing in equal time comparisons. Additionally, there still exists a large number of scenes
where BDPT struggles to sample high contributing light paths. In particular there are
two main issues:

1. In scenes with complex geometry it is actually very common that many of the path
connection strategies in Figure 2.31 will fail due to occlusions. Consider also the
common case of an interior scene that is lit by the sun from the outside. Many of
the light subpaths will not even make it through the room’s windows and cannot
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(a) Path tracing (b) Light tracing

(c) Bidirectional path tracing (d) Photon mapping

Figure 2.32: Specular-diuse-specular (SDS) paths are particularly challenging for many types of render-

ing algorithms. This is illustrated here on the well known example of a swimming pool scene, but there

exist many equivalent scenarios. (a) Path tracing will generally miss the light source aer refracting out

of the water. (b) Light tracing has exactly the same problem, but on the camera side. Note that in both

cases, explicit connection to the emier or camera is invalid due to the specular path vertex. (c) Bidirec-
tional path tracing does not improve the situation either, as now both subpaths will not end up in the

same location on the diuse surface in the middle. (d) Biased techniques, such as photon mapping, can

circumvent this, e.g. by performing density estimation of previously stored photons in the vicinity of the

diuse path vertex.

possibly connect to a camera subpath. As a consequence, most of the computation
is wasted.

2. None of the many path sampling strategies can eectively deal with specular-

diuse-specular (SDS) light paths that have only a single diuse vertex surrounded
by specular vertices, see Figure 2.32 (a–c).

Photonmapping. A closely related algorithm is photon mapping [88, 89] which splits
the overall rendering process into two steps illustrated in Figure 2.33:

1. Sample paths starting from the light sources. At each encountered scene surface,
store information about the current path throughput in a photon map data struc-
ture.
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1. Trace photons from the light sources 2. Estimate photon density

Figure 2.33: Illustration of the two-phase photon mapping algorithm. First, paths are traced from the

emier side and a photon map is created by storing the incident illumination information at each path

vertex (yellow dots). Second, rays are traced from the camera and at each shading point we estimate the

incident illumination via density estimation inside a small kernel (green spheres).

2. Sample paths from the camera and at each hit point, query the stored photon in-
formation within a small kernel to estimate the radiance arriving at that location.

To keepmemory storage sizemanageable, the two steps are usually repeatedmultiple
times with a xed number of emitted photons at each iteration.

The second step, which is essentially a density estimation process, allows us to con-
nect path vertices with each other that do not perfectly meet in the same location. For
example, we can connect the two middle vertices on the diuse surface in the SDS ex-
ample in Figure 2.32 (d).

However, as the kernel has a nite size, the photon mapping estimator is biased
and in practice generates a slightly blurred result. Most implementations today produce
consistent estimates by progressively reducing the kernel size [90, 91], so it will at least
converge to the correct solution as the number of samples and iterations increases. It
has also been shown that photon mapping can, in principle, be turned into an unbiased
estimator [92]. But this trades o the bias against higher variance, and especially the
challenging SDS paths are no longer well supported.

To make photon mapping practical, additional care is needed to not waste photon
map computation and storage in scene regions that do not signicantly contribute to
the image, for instance by adaptively guiding light paths to important locations [93, 94].

Interestingly, even biased versions of photon mapping can be incorporated into the
path space integral formulation which means it can be combined with BDPT via MIS [95,
96].
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2.5.5 Metropolis light transport

A completely dierent rendering technique is Metropolis light transport (MLT), built on
top the Metropolis-Rosenbluth-Hastings algorithm (Section 2.4.3). This aims to sample
light paths in the scene proportionally to the resulting image contribution by carefully
designing a set of mutation strategies. These are either dened directly in path space [7]
or in the underlying hyper-cube of random numbers (also known as primary sample

space in this context) that is then mapped to light paths [97, 98]. Recently, methods that
exploit both spaces simultaneously have also been considered [99, 100, 101].

Once a path with a high throughput is found (e.g. via a bidirectional sampling tech-
nique), MLT can locally explore the surrounding region of path space to nd similar
paths. Compared to other techniques that immediately throw away each sample once it
has been used once, this therefore ammortizes the cost of nding challenging paths. This
process requires a subtle balance between local and global exploration steps. While MLT
is regarded as a powerful rendering technique that can deal exceptionally well with com-
plex light transport, its adoption in production setting has been limited. TheMCMC pro-
cess is prone to generating highly correlated samples and the image often convergences
non-uniformly, which can be problematic when rendering animations that should be
temporally coherent. Recent progress in this direction investigates better stratication
in image space [102] or selectively applying MLT only to the subset of light transport
that is actually not well-sampled with simpler Monte Carlo techniques [103].

2.5.6 Path guiding

A recent line of works on rendering algorithms uses reinforcement learning embedded
in the rendering process to build a representation of the 5D (spatial and directional)
radiance eld in the scene. This data structure gives information about direct and indirect
radiance arriving at a location which can be used to improve local importance sampling
decisions. This process, called path guiding, can boost the eciency of unidirectional
algorithms signicantly.

Common radiance representations include Gaussian mixture models [104], spatial-
directional trees [105], full light paths [106], or neural networks [107].

Path guiding is a practical option to reduce path tracing variance in challenging
scenes [108]. It can however still struggle in case the radiance eld has high-frequency
contents. This happens, for example, for caustics due to complex specular geometry. In
that case, the data structures require high delity to describe the radiance information.
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2.6 Forward and reverse mode dierentiation

Let us consider a function y = 𝑓 (x) that map between spaces R𝑛 and R𝑚 . Its Jacobian
matrix

𝐽𝑓 (x) =
𝜕y
𝜕x

=

©«
𝜕𝑓1
𝜕𝑥1
(x) . . .

𝜕𝑓1
𝜕𝑥𝑛
(x)

...
. . .

...
𝜕𝑓𝑚
𝜕𝑥1
(x) . . .

𝜕𝑓𝑚
𝜕𝑥𝑛
(x)

ª®®®¬ (2.117)

collects all partial derivatives with respect to its inputs and outputs. Two notable special
cases are scalar functions (𝑛 = 𝑚 = 1), where the derivative 𝜕𝑦/𝜕𝑥 = 𝑓 ′(𝑥) is simply the
slope of 𝑓 at 𝑥 , and the case of a scalar function with multivariate input (𝑛 > 1,𝑚 = 1)
where the Jacobian simplies to a row vector 𝜕𝑦/𝜕x = ∇𝑇 𝑓 (x), i.e. the transpose of the
gradient ∇𝑓 (x) that points into the direction of steepest ascent in R𝑛 .

It is also well known from calculus that the Jacobian can be used to build a linear
approximation of 𝑓 around a point x′ as

y = 𝑓 (x) ≈ 𝑓 (x′) + 𝐽𝑓 (x′) · (x − x′). (2.118)

We extensively use information from rst-order function derivatives17 in this the-
sis for both numerical root-nding (Chapter 3) or optimization tasks for solving inverse
problems (Chapter 4). Before that, we turn to to the question of how to dierentiate
functions that are implemented as computer programs. There exist two main methods
with their own respective use cases. Often, a full computation of the Jacobian matrix
can be avoided.

We will illustrate both options on a simple example function y = 𝑓 (x) with 3 inputs
and 2 outputs (

𝑦1

𝑦2

)
=

(
𝑥1𝑥2𝑥3

𝑥1𝑥2 + 𝑥3

)
(2.119)

with Jacobian matrix

𝜕y
𝜕x

=

(
𝜕𝑦1
𝜕𝑥1

𝜕𝑦1
𝜕𝑥2

𝜕𝑦1
𝜕𝑥3

𝜕𝑦2
𝜕𝑥1

𝜕𝑦2
𝜕𝑥2

𝜕𝑦2
𝜕𝑥3

)
=

(
𝑥2𝑥3 𝑥1𝑥3 𝑥1𝑥2

𝑥2 𝑥1 1

)
. (2.120)

17Though not perfectly precise, we use the terms derivatives and gradients interchangeably in this thesis.
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1. Forward mode: This computes the Jacobian-vector product

𝜹y =
𝜕y
𝜕x
· 𝜹x (2.121)

that tells us how a perturbation 𝜹x = (𝜹𝑥1, . . . , 𝜹𝑥𝑛)𝑇 ∈ R𝑛 of the inputs is mapped
to a perturbation 𝜹y = (𝜹𝑦1, . . . , 𝜹𝑦𝑚)𝑇 ∈ R𝑚 of the function outputs. This is most
commonly used to nd the gradient of the outputs with respect to a single input
coordinate 𝑥𝑖 , which amounts to setting 𝜹x to the standard basis vector

e𝑖 = (0, . . . , 0, 1︸︷︷︸
entry 𝑖

, 0, . . . , 0)𝑇 . (2.122)

Note how the Jacobian-vector product then simply extracts the 𝑖-th column 𝜕y/𝜕𝑥𝑖
of the full Jacobianmatrix. In this case, a perturbation 𝜹𝑣 can also be interpreted as
the numerical value of the derivative 𝜕𝑣/𝜕𝑥𝑖 that is propagated through the forward
computation.

Forward mode dierentiation computes derivatives for all output variables and
resembles how one would manually write down such a computation with pencil
and paper. An example is shown here:

To compute the derivative for variable𝑦2, the derivative 𝜹𝑥1 in variable 𝑥1 is scaled
by the value 𝑥2 and subsequently added to the (zero-valued) derivative 𝜹𝑥3. An
implementation of this process is relatively straightforward: each variable 𝑣 of a
program needs to additionally track its 𝑥𝑖-derivative 𝜹𝑣 , and all arithmetic opera-
tions acting on it need to also apply the corresponding derivative computation.

Forward mode dierentiation becomes less useful when the function 𝑓 has many
inputs (i.e. its Jacobian has many columns). In that case, one such pass through
the program is required per input.
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2. Reverse mode: This alternate option computes the transposed Jacobian-vector
product

𝜹x =

(
𝜕y
𝜕x

)𝑇
· 𝜹y, (2.123)

which maps a perturbation 𝜹y ∈ R𝑚 of the function outputs back to its inputs.
Usually, we care about input derivatives with respect to a single output𝑦𝑖 , in which
case we can again plug in a standard basis vector (𝜹y = e𝑖 ). This time, this extract
the 𝑖-th row 𝜕𝑦𝑖/𝜕x of the Jacobian matrix and a perturbation 𝜹𝑣 should be inter-
preted as the numerical value of the derivative 𝜕𝑦𝑖/𝜕𝑣 that it is propagated in reverse
through the computation.

This is problematic however as we need access to all intermediate program vari-
able states which are unkown when simply stepping backwards through the pro-
gram. In general, this means that the program has to rst run normally while
the relevant intermediate results are stored in a computation graph or tape to be
later reused in a reverse (a.k.a. adjoint) phase. Here we illustrate how this is done
to compute the gradients of all inputs with respect to changes of a single output
variable:

1. Primal phase 2. Adjoint phase

In the context of training neural networks, this exact procedure is usually referred
to as backpropagation. Due to this split into two disjoint phases of computation,
implementations of reverse mode dierentiation are usually much more involved
compared to forward mode.

Discussion. Which one of these methods will be more ecient in practice depends on
the structure of the program that is being dierentiated. On the one hand, if the program
has many outputs but few inputs, the simpler forward mode is appropriate, and it will
require as many passes through the program as there are input variables. If, on the
other hand, there are more inputs than outputs, it is preferrable to make use of reverse
mode dierentiation as it requires one primal pass through the program, followed by
one reverse pass per output.
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For completeness, we mention that there also exists a mixed mode. Consider a very
complex program that is dierentiated using reverse mode—but it has a very costly sub-
computation step that only has a single input. In that case, it is more ecient to use
forward mode for that part locally, inside a scheme that is based on reverse mode overall.

The actual derivative expressions can either be derived by hand and manually im-
plemented as derivative programs, or alternatively computed via automatic dierentiation

(AD). There exist excellent tools nowadays that perform AD of numerical code [109, 110,
111, 112, 113, 114]. However, we will later show that direct application of such tools to
complete rendering algorithms can produce unsatisfactory results or even completely
wrong derivatives due to non-dierentiable components related to the computation of
discontinuous integrals. Additional care is required in our applications to ensure both
correctness and adequate performance.

We refer to Griewank and Walther [115] for a much more detailed overview of AD
and the dierent approaches for dierentiation in general.
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3 | Specular Manifold Sampling for
Rendering High-Frequency
Caustics and Glints

Figure 3.1: Rendering of a shop window featuring a combination of challenging-to-sample light transport

paths with specular-diuse-specular (SDS) interreflection: the two golden normal-mapped pedestals are

illuminated by spot lights and project intricate caustic paerns following a single reflection from the

metallic surface, while the transparent center pedestal is lit from the inside which generates caustics via

double refraction. The glinty appearance of the shoes arises due to specular microgeometry encoded in

a high-frequency normal map. This image was rendered by an ordinary unidirectional path tracer using

our new specular manifold sampling strategy. The remaining noise is due to indirect lighting by caustics,

which is not explicitly sampled by our technique.

In this chapter we focus on specular light paths, i.e. paths involving interactions with
smooth metallic or refractive surfaces. Their constrained nature makes these dicult
to nd for many existing methods: at specular interfaces, light must satisfy the law of
reection or refraction, which drastically lowers the probability of sampling a valid con-
guration connecting the camera to a light source. Caustics or glittery surfaces that
exhibit random patterns of highlights due to specular microgeometry are visually strik-
ing examples of such specular paths, though they are often much more subtle while still
having a negative eect on overall convergence. The large family of specular-diuse-
specular (SDS) paths with only a single diuse vertex surrounded by specular chains
simply cannot be found at all and is normally absent in rendered images. The caustics
seen through the shop window in Figure 3.1 are an example of this conguration—they
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are only visible thanks to the proposed sampling strategy. The glints on the shoes are
even more challenging and involve only specular vertices: a point spotlight, perfectly
specular microstructure, the glass window, and a pinhole camera.

In this chapter, we present a remarkably simple technique for sampling specular
chains connecting two specied shading points—including glints and SDS paths—in an
unbiased manner. Our approach builds on the theory of specular manifolds but signif-
icantly improves its practicality in formerly challenging cases, e.g. when working with
high-frequency displaced or normal-mapped geometry. Concretely, our contributions
are:

1. A unied manifold sampling strategy that is compatible with rendering both re-
ective and refractive caustics.

2. A specialized variant for rendering glints, which reduces memory usage hundred-
fold compared to prior work.

3. A biased variant of the method with reduced variance.

4. A two-pass sampling strategy for normal-mapped surfaces.

5. Changes to the specular manifold constraints of Jakob and Marschner [116] that
improve robustness and convergence.

6. We show how our method can be deployed in a unidirectional path tracer and
compare its performance to prior work.

The main limitation of our sampling technique is that variance increases signicantly
for longer specular chains, hence our experiments mainly focus on short chains with
one or two vertices. That said, our approach is highly extensible, and we believe that
future work could address this limitation.

Before delving into specics about our method, Section 3.1 rst reviews prior work
in the areas of caustic and glint rendering techniques.
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3.1 Background

While current unidirectional unidirectional [52] or bidirectional [86, 87] path sampling
strategies are very robust in many common rendering scenarios, they can still be sur-
prisingly brittle and subject to catastrophically poor convergence in the presence of SDS
paths. This can even be the case if the path generation is backed with sophisticated
guiding strategies that exploit past observations to improve the quality of generated
samples [104, 105, 106, 107].

Methods based on photon maps (Section 2.5.4) are able to resolve the issues with SDS
paths by introducing spatial blurring that relaxes the original problem. While they are
an excellent choice for certain path classes, they can introduce objectionable blur, and
they do not handle important cases including caustics on non-diuse surfaces or glints.

Similarly, path space can also be selectively mollied to introduce bias only for path
types that were otherwise challenging or impossible to sample [117, 118]. In contrast,
our work focuses on general path sampling in the original non-relaxed problem.

Fermat’s principle states that specular paths are extremal, i.e., they locally maximize
or minimize the time that light requires to travel from one end to the other. One way
of generating such paths thus entails optimizing path length or solving an equivalent
root-nding problem. In fact, many forward rendering techniques that target specular
interreections exploit some form of gradient information computed based on the light
path geometry. This idea was pioneered by Mitchell and Hanrahan [119], who render
caustics from implicitly dened curved reectors using interval arithmetic and Newton-
Raphson iteration to nd extremal one-bounce specular reection paths connecting a
given pair of vertices. We also experimented with a similar approach in an early stage
of this work and found that the highly conservative nature of interval arithmetic often
causes intervals to be too large to allow for systematic pruning of the solution space.
Another approach involves precomputed hierarchical data structures that partition tri-
angle meshes and bound the positions and normals of each subtree. Building on such a
position-normal hierarchy, Walter et al. [120] propose an ecient pruning strategy for
specular chains with a single specular refraction (e.g. underwater caustics).

Other forward rendering applications also make use of light path gradients, e.g.
gradient-domain rendering [121], adaptive sampling and reconstruction [122], and the
interpolation of local solutions of diuse [123] and non-diuse [124] global illumination.
Analytic and approximate ray-space derivatives are also part of the standard graph-
ics pipeline that computes texture-space footprints to lter texture lookups via mip-
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mapping and elliptically weighted averages [125]. Such footprints can be further prop-
agated following interaction with smooth [126] and rough [127] materials.

Our algorithm builds on top Jakob’s specular path space manifolds [128] that analyze
the dierential light path geometry of valid specular paths. It was originally developed
as part of a Markov chain Monte Carlo perturbation strategy calledmanifold exploration

(ME) [116] that makes proposals in the framework of Metropolis Light Transport [7].
The natural constraint representation [129, 130] signicantly expands on this idea in the
more general case of multiple glossy interactions. One downside of these perturbation
strategies is that they can only make very small changes to a specular path; exploration
of the larger space relies onmany repetitions of this basic operation. When the geometry
is characterized by high-frequency detail, the manifold of valid specular paths tends to
become very complex, and simple local steps are insucient for global exploration. The
theory of specular manifolds is also highly related to the previously proposed framework
by Chen and Arvo [131] who used perturbation theory to render specular reections on
curved surfaces.

The manifold next event estimation (MNEE) technique of Hanika et al. [132] applies
the ME equation-solving iteration in a pure Monte Carlo context. Starting with an in-
correct initial specular path, MNEE iteratively attempts to walk towards a valid solution
via projection and tangential steps on the specular manifold, similar to standard numer-
ical root-nding. Due to a simple deterministic initialization, it can nd at most a single
solution, which works well on smooth geometry (e.g. spheres) but breaks down in more
challenging cases. MNEE was later adapted as a connection strategy for bidirectional
path tracing [133] and other recent work has explored the potential of next event esti-
mation strategies that sample multiple vertices in the context of volume rendering [134,
135].

Our proposed method, named specular manifold sampling (SMS), is a generalization
of the MNEE approach: using a stochastic initialization and an unbiased sample weight
estimator, we are able to nd solutions on complex geometry where manifold-based
techniques were previously inapplicable. We also demonstrate that SMS straightfor-
wardly generalizes to the related problem of rendering glints.

Previous specialized glint renderingmethods implement an eective BRDF that aver-
ages the behavior of a high-frequency specular surface over a given surface region [136,
137, 138]. The method of Yan et al. [137] does so by constructing position-normal hierar-
chies in texture space to solve an approximate form of this problem for normal-mapped
surfaces. These tree data structures tend to become extremely large, requiring tens of
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gigabytes of memory in our experiments. Procedural glints [139, 140, 141, 142, 143, 144]
can be rendered with a much lower storage footprint, but are of course signicantly
less exible. Recent work on glint rendering has focused on incorporating wave-optical
eects [11], and directional bases for ltering product integrals involving glints [145].

We note that some of the discussed caustic and glint rendering techniques (Mitchell
and Hanrahan [119], Walter et al. [120], and Yan et al. [136, 137]) nd all possible so-
lutions within their supported path classes and are thus fully deterministic. This yields
converged renderings with a single sample per pixel when the scene contains no other
sources of variance, but this is rarely the case in practice. In contrast, our method
stochastically samples individual solutions; the added variance due to this random deci-
sion can then be reduced along with complementary sources of variance (environment
mapping, indirect illumination, depth of eld, and so on).

Concurrently to our work, Loubet et al. [6] developed an algorithm inspired by Wal-
ter et al.’s method [120] that also generalizes to rendering of specular reections and
glints. They achieve this by deriving analytic expressions for the radiance due to inter-
action with a single triangle with a microfacet BSDF.

Since the original publication of our method [1], Pediredla et al. [146] used a method
similar to ours in the context of refractive radiative transfer [147]. A root-ndingmethod
related to SMSwas also used byWang et al. [148] in order to render light paths consisting
exclusively of specular interactions, e.g. a series of refractions connecting a point light
and a pinhole camera.

The remainder of this section covers more details regarding the specular path space
manifolds [128] underlying our method. In particular, we review the denition of the
specular manifold (Section 3.1.1), the ME perturbation strategy (Section 3.1.2), and the
MNEE sampling technique (Section 3.1.3). Though our method is mostly aimed at purely
specular light transport, like previous works it can also be applied to glossy materials
(Section 3.1.4). Lastly, we highlight the underlying challenges of glint rendering together
with previous solution approaches (Section 3.1.5).
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diffuse reflection

specular reflection

specular refraction

Figure 3.2: A light path x̄ between the camera and emier position that involves a series of specular

reflections and refractions.

3.1.1 Specular path-space manifolds

Consider a light transport path x̄ = x0, . . . , x𝑛 containing a chain of specular vertices
between two non-specular endpoints x1 and x𝑛 . For example, x1 could be a shading point
on a diuse surface, and x𝑛 a position on a light source (Figure 3.2). Although this path is
an element of a large and high-dimensional path space (Section 2.3.3), it eectively lies
on a much lower-dimensional subspace, since each specular vertex imposes physical
constraints (in the form of Dirac delta functions) that collapse some dimensions of the
ambient space. For example, when transmission takes place at a vertex, it must satisfy
the law of refraction, removing all its continuous degrees of freedom.

Jakob andMarschner [116] characterize these constraints via a function c𝑖 ∈ R2 asso-
ciatedwith each vertex x𝑖 . Concretely, c𝑖 projects the generalized half-vector𝝎h(x𝑖,𝝎,𝝎′)
by Walter et al. [31], see also Equation (2.38), onto the local tangent space at the vertex:

c𝑖 (x𝑖−1, x𝑖, x𝑖+1) = T(x𝑖)𝑇 𝝎h(x𝑖,−−−−→x𝑖x𝑖−1,−−−−→x𝑖x𝑖+1), (3.1)

𝝎h(x𝑖,𝝎,𝝎′) =
𝜂 (x𝑖,𝝎) 𝝎 + 𝜂 (x𝑖,𝝎′) 𝝎′
‖𝜂 (x𝑖,𝝎) 𝝎 + 𝜂 (x𝑖,𝝎′) 𝝎′‖

. (3.2)

Here, T(x𝑖) is a 3× 2matrix of tangent vectors s and t at x𝑖 , and 𝜂 (x,𝝎) is the refractive
index associated with position x and direction 𝝎. The conguration is illustrated in
Figure 3.3 (a) for the case of specular reection.

The constraint function takes on zero values, i.e. c𝑖 = (0, 0)𝑇 , when the vertices x𝑖−1,
x𝑖 , and x𝑖+1 are aligned in order for the relevant physical laws to hold. Note that the use
of the generalized half-vector succinctly covers both cases of specular reection (2.19)
and refraction (2.20).

A valid specular path can then be summarized as a root of the combined function
C(x̄) = (c2, . . . , c𝑛−1)𝑇 that stacks all specular path constraints. The specular manifold

S = {x̄ | C(x̄) = 0} is the set of all such light paths and forms a subset of the full path
space P, as visualized abstractly in Figure 3.3 (b).
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(a) Local specular constraint (b) Path space illustration

Figure 3.3: (a) The specular constraint by Jakob and Marschner [116] projects the (generalized) half-

vector 𝝎h onto the local tangent frame (s, t). A configuration where c𝑖 = (0, 0)𝑇 therefore corresponds

to a valid specular reflection or refraction. (b) An abstract visualization of the full path space P with a

lower-dimensional specular manifold S embedded inside.

specular reflection

Figure 3.4: An example light path x̄ = x0x1x2x3 of length three with one specular reflection at vertex x2.

This collapse of dimensions caused by the specular constraints also inuences the
computation of the path contribution function (2.59) over path space. Consider the ex-
ample light path of length three in Figure 3.4. Ordinarily, the corresponding contribution
involves the BSDF 𝑓𝑠 evaluated for each surface interaction and one geometry term 𝐺

between each set of subsequent vertices:∫
M

∫
M

∫
M

∫
M
𝐿e(x3→x2)𝐺 (x2↔x3)

· 𝑓𝑠 (x3→x2→x1)𝐺 (x1↔x2) 𝑓𝑠 (x2→x1→x0)
·𝐺 (x0↔x1)𝑊e(x1→x0) d𝐴(x3) d𝐴(x2) d𝐴(x1) d𝐴(x0). (3.3)

Recall from Section 2.3.2 that the geometric terms encode a change of variables between
the projected solid angle and area measure of two vertices, as well as the binary visibility
function 𝑉 :

𝐺 (x1↔x2) = 𝑉 (x1↔x2) ·
����� dΩ⊥x1 (−−−→x1x2)d𝐴(x2)

����� . (3.4)

Due to the specular vertex x2, the path throughput includes a Dirac delta function and
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one of the integrals disappears:∫
M

∫
M

∫
M
𝐿e(x3→x2) 𝐹 (x3→x2→x1)

·𝐺 (x1↔x2↔x3) 𝑓𝑠 (x2→x1→x0)𝐺 (x0↔x1)
·𝑊e(x1→x0) d𝐴(x3) d𝐴(x2) d𝐴(x1) d𝐴(x0). (3.5)

This causes two further changes: the BSDFs at specular vertices are replaced with a
reectance value 𝐹 (usually the Fresnel terms that are part of the specular BSDFs, see
Sections 2.2.3 and 2.2.4), and the geometry term must be replaced by a more general ver-
sion that accounts for specular interreection involving multiple vertices. Like before,
this term still encodes a change of variables: this time, it relates the projected solid angle
measure at one end, and the area measure on the other end of the specular chain:

𝐺 (x1↔ . . .↔x𝑘) = 𝑉 (. . . ) ·
����� dΩ⊥x1 (−−−→x1x2)d𝐴(x𝑘)

����� = 𝑉 (. . . ) ·
����� dΩ⊥x1 (−−−→x1x2) d𝐴(x2)d𝐴(x2) d𝐴(x𝑘)

����� . (3.6)

This expression can either be computed using ray dierentials [126] or using the deriva-
tives of the constraint function as described in the next section.

3.1.2 Manifold exploration

The rst application of path-spacemanifoldswas theMEmethod by Jakob andMarschner
[116] which is a mutation strategy for use in the MLT algorithm [7]. As the name sug-
gests its goal is to “explore” the regions surrounding valid specular light paths (sampled
by other methods) while staying on the specular manifold. The high-level idea is shown
in Figure 3.5 where a small perturbation of an endpoint leads to a global update step to
keep all specular constraints fullled.

This is accomplished using the Implicit Function Theorem (IFT) [149] which describes
the neighborhood of a given path conguration using the Jacobian matrix 𝐽C(x̄) of the
constraint function. As illustrated in Figure 3.6, thismatrix has a tri-diagonal block struc-
ture as each constraint only depends on the corresponding vertex and its two neighbors
along the path.

The IFT allows us to dene a tangent space of the specular manifold that we can
use to navigate the high dimensional space in a more informed manner. In particular,
the tangents specify—to a rst-order approximation—how the specular vertices should
adjust due to changes in either of the two non-specular endpoints. They can be computed
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Extrapolate

Projection

(a) MLT mutation strategy (b) Path space view

Figure 3.5: (a) As part of a MLT mutation, we want to move a non-specular end point x1 of light path
x̄. The manifold exploration method can apply a global change to the remaining specular vertices such

that this updated path x̄′ still lies on the specular manifold. (b) Abstract visualization of the underlying

manifold walk algorithm. We first take a step along the tangent space of S before projecting back to a

valid light path.

easily from the columns of the Jacobian matrix as

𝜕(x2 . . . x𝑛−1)
𝜕x1

= −
(

𝜕C
𝜕(x2 . . . x𝑛−1)

)−1
· 𝜕C
𝜕x1

(3.7)

and

𝜕(x2 . . . x𝑛−1)
𝜕x𝑛

= −
(

𝜕C
𝜕(x2 . . . x𝑛−1)

)−1
· 𝜕C
𝜕x𝑛

, (3.8)

see also again Figure 3.6. The matrix inversion here can be computed eciently due to
its sparse structure, even in the case of long specular chains where 𝑛 is large.

For convenience it make sense to express the functionC and its derivatives not based
on the world space 3D vertex positions x𝑖 , but using a 2D coordinate system based on
their surface position. This way, the input and output of each vertex constraint x𝑖 have
matching dimensions and each block in the matrix has size 2 × 2. The UV texture co-
ordinates already provide such a 2D coordinate system and are thus a logical choice.
Furthermore, thanks to the IFT, a purely local parameterization (e.g. per-triangle UV co-
ordinates) suces to compute all necessary derivatives. We evaluate all derivatives using
manually designed code due to their relative simplicity. Dedicated tools for automatic
dierentiation could be used alternatively.

Depending on the choice of coordinate system, movement along the manifold tan-
gents will not only step o the specular manifold, but will generally produce vertices that
do not even lie on the scene geometry. To recover suitable vertex positions, an additional
reprojection step is required, either via ray tracing from one of the endpoints [116], or
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Figure 3.6: Le: An example light path with a set of specular vertices x2, x3, x4. Right: The constraint

function C and its Jacobian matrix 𝐽C with a tri-diagonal block structure. The illustration partitions the

matrix into three components that are relevant for computing the tangent space of the specular manifold.

directly moving to the nearest surface location [129, 132].
Consider again Figure 3.5 for a more detailed discussion of how this is applied to the

MLT mutation strategy. First, an oset x1→x∗1 is applied to a non-specular endpoint of
the specular path x̄. This breaks the light path in the sense that it will no longer fulll
the specular constraint at x2. ME then performs a global update to all vertex positions
to move the path back to the manifold. It achieves this with two steps:

Extrapolation: Translate the endpoint oset x1→ x∗1, into osets along the specular
manifold tangent (3.7) and update all specular vertices accordingly. Note that the
new intermediate positions x′𝑖 are now generally disconnected from scene geom-
etry.

Projection: Project the specular vertices back onto the geometry via ray tracing: start-
ing from the endpoint x𝑛 , connect to the last specular vertex x′𝑛−1 and trace 𝑛 − 1
more bounces until a new path is formed with tentative endpoint x′1.

While this usually moves the vertex x1 towards x∗1, its new location is generally not yet
at the desired target (x′1 ≠ x∗1). Jakob and Marschner therefore let these two steps repeat
iteratively until the process converges to a valid path x̄∗ that includes the desired vertex
x∗1. This is called a manifold walk and resembles standard numerical root-nding algo-
rithms like Newton’s method. In particular, it also exhibits quadratic convergence when
we are suciently close to a solution, which is usually the case here as the perturbations
x1→x∗1 tend to be small. However, there are no guarantees and the manifold walk might
also fail to converge to a suitable path.
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Seed path

Final path

Seed path

Final path

(a) MNEE configuration (b) Path space view

Figure 3.7: (a) Finding a specular refraction through a spherical interface using manifold next event

estimation. Note how the (straight-line) seed path is usually very close to the valid specular path in this

scenario, which means that the manifold walk has a high probability of successfully converging to a valid

solution. (b) Abstract path space visualization of the process. The manifold walk tries to find a valid path

on S using an (initially invalid) seed path.

We note that the Jacobian 𝐽C is also useful for the computation of the generalized
geometry term (3.6) from above as

𝐺 (x1↔ . . .↔x𝑘) = 𝑉 (. . . ) ·
�����P2 · ( 𝜕C

𝜕(x2 . . . x𝑘−1)

)−1
· 𝜕C
𝜕x𝑘

����� ·𝐺 (x1↔x2) (3.9)

= 𝑉 (. . . ) ·
�����P𝑘−1 · ( 𝜕C

𝜕(x2 . . . x𝑘−1)

)−1
· 𝜕C
𝜕x1

����� ·𝐺 (x𝑘−1↔x𝑘), (3.10)

where𝐺 (x↔x′) is the usual geometry term between two vertices and P𝑖 is a projection
matrix that extracts the 2 × 2 block associated with vertex 𝑖 . See Jakob’s thesis [128] for
details.

3.1.3 Manifold next event estimation

Despite its origin as an MCMC method, manifold walks can also be applied in a regular
Monte Carlo context, as demonstrated by the MNEE method by Hanika et al. [132]. In-
stead of applying a mutation to an existing valid light path, they start with a tentative
seed path x̄(0) that is not yet on the specular manifold. The manifold walk is then equiv-
alent to a root-nding method that attempts to nd a point on the specular manifold.
Solutions to the equationC(x̄) = 0 can be found using themultivariate Newton-Raphson
method

x̄(𝑖+1) = x̄(𝑖) − 𝐽C(x̄(𝑖))−1 · C(x̄(𝑖)) (3.11)

and, like previously, an additional projection step is needed after each iteration to ensure
the updated vertex positions lie on actual scene geometry.
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1 # Estimate radiance travelling from emitter position x𝑛 to shading point x1.
2 def mnee(x1, x𝑛):
3 # Collect specular vertices along ray x1→x𝑛
4 s = (x2, . . . , x𝑛−1) = specular_ray_intersections(x1, x𝑛)
5 # Run Newton solver to find valid connection

6 s∗ = (x∗2, . . . , x∗𝑛−1) = manifold_walk(x1, s, x𝑛)
7 # Contribution divided by PDF of sampling the emitter position

8 return 𝐹 (s∗) ·𝐺 (x1↔x∗2↔ . . .↔x∗𝑛−1↔x𝑛) · 𝐿e (x𝑛) /𝑝 (x𝑛)

Algorithm 3.1: Manifold next event estimation [132].

MNEE is specic to refractive chains and initializes the Newton iteration with a seed
path corresponding to a straight-line connection of a given shading point and an emitter
position (Figure 3.7 and Algorithm 3.1).

For caustic rendering applications (e.g. Figure 3.8), the probability of nding a valid
path in this way is generally much higher compared to standard sampling techniques in
a path tracer, and the variance of rendered images is thus reduced drastically. However,
the manifold walk can also fail in case the seed path is too far away from any solution,
for instance if the geometry is very complex.

Prior toMNEE, the fundamental problem impeding the integration of manifold walks
into pure Monte Carlo methods had been the determination of the probability 𝑝 (x̄∗) of
nding a solution path x̄∗ given an initial state x̄(0) chosen with density 𝑝 (x̄(0)). This
probability is given by a marginalization over the path space P [132]:

𝑝 (x̄∗) =
∫
P
𝑝 (x̄∗ | x̄(0)) 𝑝 (x̄(0)) d𝜇 (x̄(0)). (3.12)

The computation of this expression is mathematically daunting because 𝑝 (x̄∗ | x̄(0)) en-
capsulates the behavior of an unpredictable equation-solving iteration. MNEE sidesteps
this problem using two clever tricks: First, it always uses the same initialization, turning
𝑝 (x̄(0)) into a Dirac delta function. Second, it relies on MIS (Section 2.4.4) to fall back
to standard path tracing when the manifold walk fails. In this case, the remaining term
𝑝 (x̄∗ | x̄(0)) cancels out in the estimator.
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Figure 3.8: Equal time comparison of path tracing (a) and MNEE (b) applied to a dielectric sphere lit by

a small area light. The path tracer struggles due to the SDS paths, while MNEE is easily able to sample

the specular transport by refining the straight-line initialization using the Newton solver.

Figure 3.9: Equal time comparison of various methods on a swimming pool test scene with complex

(normal-mapped) specular geometry. (a) Path tracing is not suited for rendering the challenging SDS

paths present in this scene and produces high variance. (b) MNEE can reliably find one solution path

(due to its deterministic initialization) but still suers from high-frequency variance because it falls back

to a path tracer for all other light connections. (c) In order to clean up the noisy image, all outliers due to

the path traced solutions could be discarded. This leads to severe bias in the form of energy loss. (d) Our
proposed specular manifold sampling method, significantly outperforms MNEE and can find all possible

solution paths.
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(a) Glossy interactions (b) Path space view

Figure 3.10: Generalizing to glossy materials admits a continuum of solution light paths between the path

endpoints (a) (red outline) which means all parts of path space in a region around the specular manifold

corresponds to valid paths (b).

However, MNEE also suers from several fundamental limitations that we intend to
address with our method: because MNEE can nd at most a single specular path, it does
little to reduce variance when there are multiple solutions. Most of the examples in the
original paper [132] are extremely simple shapes such as spheres1 or cylinders, where a
single solution indeed suces to render most specular paths (Figure 3.8). However, this
is clearly no longer the case when the specular geometry is more complex, as shown on a
more challenging swimming pool scene in Figure 3.9 (a–c). Also, while the straight-line
initialization proposed by Hanika et al. works well for refractive caustics, it is unclear
how it could be generalized to the reection case.

Our method tries to address these problems and can sample all possible solution
paths, including reections. A preview for the same swimming pool test scene is shown
in Figure 3.9 (d).

3.1.4 Extension to glossy surfaces

The framework of specular path-space manifolds can also be extended to glossy mate-
rials, e.g., ones modeled using rough microfacet models. While high surface roughness
signicantly simplies the light transport and standard emitter sampling strategies be-
come viable, materials with low roughness can still benet from a specialized treatment.

Surface roughness relaxes the set of valid connections to a continuous space where
the manifold is now a more general, blurry region of path space, see Figure 3.10.
1Rendering of caustics in 3D models of human eyes constitutes an important use case of MNEE in the
entertainment industry [150].
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Jakob and Marschner [116] propose the following generalization of their specular
path constraints (3.2) to the rough case:

c𝑖 (x𝑖−1, x𝑖, x𝑖+1) = T(x𝑖)𝑇 𝝎h(x𝑖,−−−−→x𝑖x𝑖−1,−−−−→x𝑖x𝑖+1) − T(x𝑖)𝑇 m𝑖 . (3.13)

Here, m𝑖 corresponds to a microfacet normal (Section 2.2.5) that is also projected to the
same tangent space. By setting it to a xed value (e.g. sampled from a microfacet distri-
bution) this still gives a clearly dened constraint that can be interpreted as a “specular”
path involving specic microfacets instead of the (macroscopic) geometric normals. The
generalized solution space is referred to as an oset specular manifold.

In the context of MLT mutations [116], this now allows additional freedom where
we cannot only move the vertex positions on the specular path but also adjust the oset
microfacets m𝑖 in order to explore interesting regions of path space. These types of
mutations were further extended by Kaplanyan et al. [129] and Hanika et al. [130] to
achieve higher robustness and better exploration.

MNEE [132] can also be generalized to support roughmaterials. Here, onemicrofacet
normal is sampled for each glossy vertex along the seed path before letting the Newton
solver converge to a solution path that fullls Equation (3.13) at all vertices.

In this thesis we mostly focus on the purely specular case, so please refer to the
corresponding articles for more details, e.g., concerning the computation of the glossy
path contribution.

3.1.5 Reflections from glinty microstructures

Another type of challenging specular light transport that we address in this chapter
is reection from high-frequency specular microstructures. This case is relevant when
rendering small surface imperfections such as bumps, scratches, or other types of glints.
Consider the setup in Figure 3.11 and recall from Section 2.5.1 that standard emitter
sampling strategies are very ineective on specular surfaces. This means we have to
mainly rely on BSDF sampling where reected rays need to hit the light sources. This is
very unlikely for small, concentrated emitters like the sun and thus, congurations like
these can cause unacceptably high variance.

A similar reection geometry arises in the case of microfacet models (Section 2.2.5),
though the two operate at dierent scales. Microfacets produce smooth, non-glinty high-
lights as the surface variations are innitesimally small and cannot be discerned by an
observer. These can be handled using default emitter sampling techniques. In contrast,
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far away

Figure 3.11: Rendering of glinty surfaces poses similar challenges as the previously discussed SDS light

paths. When focusing on a small surface patch (zoomed-in view on the right), reflected rays only have a

small probability of encountering small or distant light sources. As in the case of SDS paths, bidirectional

techniques cannot eiciently handle this case, since they struggle to hit the tiny camera aperture or are

unable to connect two subpaths that meet on the specular surface.

glinty highlights are the result of microstructure that can be directly perceived by the
viewer.

Nonetheless, specialized glint rendering techniques generally build on top of micro-
facet theory and introduce a generalized form of the NDF that adapts to the scale of
the problem. These approaches analyze the behavior of a specular microstructure over a
small surface patch (usually the areawithin a single image pixel, a.k.a. the pixel footprint)
to determine an averaged BRDF that accounts for glints.

For example, Yan et al. [136] introduce the P-NDF2 that takes this role for the case
of microgeometry dened explicitly via a high-resolution normal map, see Figure 3.12.
Evaluating a P-NDFs is no easy task however. The initial method [136] explicitly in-
tegrates over a nely discretized normal map which can be very slow. A follow up
work [137] improves eciency considerably by converting the normal map into a spatio-
directional 4D tree. However this comes at the cost of very high memory consumption
to store the precomputed data structure.

Another type of approach was explored by Jakob et al. [139]. Here, a discretized
version of the NDF is used where a large (but nite) number of microfacet normals rep-
resent the microgeometry. The NDF evaluation is then replaced by a counting process,
i.e., we need to know how many of the individual normals have a suitable position and
orientation for a given camera and light conguration.

While storing and querying a large number of normals might seem impractical at
rst, an ecient implementation is possible by generating and counting the normals
2The P stands for surface “patch” here.
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Figure 3.12: One approach to glint rendering is amicrofacet model with aP-NDF [136]. Le: a zoomed-in

view on a high-resolution normal map representing a Gaussian height field. Elliptical pixel footprints of

varying sizes (e.g. produced by viewing the surface from dierent distances) are overlaid on top. Right:
corresponding P-NDFs, visualized on the projected disk. Note the intricate details that is ultimately

responsible for the glinty appearance during rendering. As the footprint size increases, the distributions

tend to a smooth function. Standard analytic microfacets are the limit case of this averaging process for

specific surface statistics.

only procedurally during the evaluation routine. This way, no storage of a data structure
is necessary and memory consumption is low. The downside is that only certain types of
microgeometry can be represented this way, as all discrete microfacets are still assumed
to be drawn from one of the available smooth models.

Our proposed method lies somewhere in between these two works. We also use an
explicit normal map representation but do not precompute any heavy data structures.
Instead of evaluating the full P-NDF we treat the problem from the perspective of light
transport and sample individual solution light paths, leveraging the framework of spec-
ular manifolds for the rst time in the context of glints.
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3.2 Main method

We now turn to the proposed SMS method, initially focusing on a simple unbiased al-
gorithm that generalizes to cases where multiple specular paths connect two given end-
points. We then present an alternate version with reduced variance, but at the cost of
nonzero bias.

Section 3.3 will discuss several extensions to this: the rst replaces the specular con-
straints of Jakob and Marschner [116] with improved variants, the second samples paths
in two stages to improve performance on normal-mapped surfaces, and the last stream-
lines the algorithm for glint rendering. Many of these extensions are modular and can be
combined as desired with both unbiased or biased SMS. Figure 3.13 shows a preview of
several combinations applied to the problem of rendering refractive caustics, comparing
our results to MNEE and a brute-force reference.

3.2.1 Finding multiple solutions

We initially restrict ourselves to specular chains with a single smooth reection or re-
fraction. Our technique however extends to chains with surface roughness and multi-
ple interactions analogously to Hanika et al. [132]; see Sections 3.4.6 and 3.4.7. In this
restricted setting, there is a discrete and nite set3 of solutions connecting two given
endpoints. Our approach to nding them is simple: whereas MNEE performs mani-
fold walks using a xed initialization, SMS randomly samples the initial guess from a
probability distribution 𝑝 (x̄(0)). Newton’s method exhibits quadratic convergence when
the starting point is suciently close to a root, hence all solutions will be found with a
nonzero probability4—however, the probability of successful convergence is unknown.

There is a great degree of latitude in the choice of an initial guess: we could uni-
formly generate positions on specular surfaces, or sample the BSDF of the preceding
vertex x1 and nd starting points via ray tracing. Regardless of what approach is used,
we assume that the implementation of this sampling strategy takes two uniformly dis-
3We note that cases with a continuous 1D subspace of solutions can be constructed, for instance when x1
and x3 lie at the center-line of a perfect cylindrical mirror. This is of no relevance for rendering natural
scenes, since an arbitrarily small perturbation of the surface geometry would break the symmetries that
are needed to create a 1D solution subspace. We ignore this corner case similarly to prior work [120].

4While this generally holds true for Newton’s method, our algorithm involves an additional projection
operation that moves vertices back to valid geometry after each solver iteration. This could theoretically
result in solution paths that cannot be found at all, though we did not nd such cases in any of our tests.
A more rigorous analysis or proof of the solver convergence would be a valuable future contribution.
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Reference Biased SMS (ours) + new constraints + two-stage

Unbiased SMS (ours) +new constraints + two-stageMNEE

SR: 26% SR: 6% SR: 18% SR: 27%

SR: 6% SR: 18% SR: 29%

BT: 30 BT: 8 BT: 6

Figure 3.13: Equal time renderings (1 minute) of our two methods and their extensions illustrated on

a normal-mapped dielectric sphere illuminated by a small area light. Small insets summarize manifold

walk success rate (SR) and average number of Bernoulli trials (BT), where applicable. (a) Previous work
(MNEE) fails to capture the full complexity of the caustic as it only finds at most one refractive path per

shading point. For the remaining energy it falls back to path tracing with high variance. (b)Our unbiased
SMS method on its own. (c–d) Adding the constraint and two-stage manifold walk improvements which

increase the success rate while reducing the iteration count. (f–h) Same sequence but using our biased

SMS variant which suppresses the noise of the reciprocal probability estimation. As the success rate

increases from le to right, bias goes down. The remaining bias mainly manifests itself in the regions

where the unbiased counterpart remains noisy. The biased version uses a sample set size of𝑀 = 16. (e) A
path-traced reference that was rendered for 5 hours.

tributed random numbers u = (𝑢1, 𝑢2) ∈ [0, 1)2 C U as input and warps them to the
desired distribution. Our objective now is to generate an initial sample u that is close
enough to the solution, so that the Newton iteration (3.11) will take us there.

When inspecting the convergence behavior of these manifold walks on the random
number space U, we generally observe multiple basins of convergence B𝑘 ⊆ U, each
containing a point u(𝑘) identied with a corresponding solution vertex x(𝑘)2 . Figure 3.14
illustrates the situation on a simple scene with a cardioid caustic.

Newton’s method is known to produce convergence basins that potentially have an
extremely complex geometric structure [151] and can even be fractal. For example, Fig-
ure 3.15 (a) shows convergence towards three dierent solutions of a simple polynomial
equation on the set of complex numbers and Figure 3.15 (b–c) show a particularly chal-
lenging situation we encountered after applying a normal map to the Ring scene.
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3210

Figure 3.14: (a)Multiple solutions of the specular path constraint form a superposition of caustics in the

Ring scene. (b) Color map showing the number of solutions at each shading point. (c) The three solution
paths at a particular point. (d) The basins of convergence (in random number space) corresponding to

those solution paths. All manifold walks started at a point inside a region (e.g. the black dots) converge

to the associated solution (colored dots).

Recall that our goal is to use these solutions in a Monte Carlo estimator, where an
algorithm that merely nds solutions is insucient—we must also know the discrete
probability 𝑃𝑘 of nding a particular path vertex x(𝑘)2 . An unbiased estimator is then
given by a standard MC ratio 𝑓 (x̄)/𝑝 (x̄), where 𝑝 (x̄) in the denominator contains 𝑃𝑘 .

Since the samples u are uniformly distributed, this probability is simply the area of
the associated convergence basin onU:

𝑃𝑘 =

∫
U
1B𝑘 (u) d𝜇 (u) . (3.14)

However, exact evaluation or precomputation of this integral is clearly infeasible: as
discussed, B𝑘 can have an extremely complex shape which also depends on the position
of the path endpoints. On the other hand, a simple unbiased estimator is given by

〈𝑃𝑘〉 =
1
𝑁

𝑁∑︁
𝑖=1

1B𝑘 (u𝑖), (3.15)

where u𝑖 ∈ U is a sequence of i.i.d. uniform variates. Unfortunately, this approach is
awed: usage of 𝑃𝑘 occurs in the denominator of the path throughput weight. Since
E[1/𝑋] ≠ 1/E[𝑋 ], using this estimator could introduce signicant bias: for example, 〈𝑃𝑘〉
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Figure 3.15: (a) Newton fractal for 𝑧3 − 1 = 0 with 𝑧 ∈ C. (b) The same Ring scene as in Figure 3.14, but

with a normal map applied that causes a more high-frequency caustic paern. (c) Complex convergence

basins with 5 unique solutions encountered in this scene.

can equal zero if all 𝑁 tries fail to converge to the basin B𝑘 , in which case the estimated
path throughput weight would be innite! Fortunately, an unbiased estimator for the
inverse 〈1/𝑃𝑘〉 can be created using a simple iterative approach.

3.2.2 Unbiased algorithm

The problem of computing an unbiased MC estimate of the reciprocal of an integral was
studied by Booth [152]. Recently, Qin et al. [92] built on this idea to create an unbiased
photon gathering strategy. The key idea underlying Booth’s approach is surprisingly
simple: turning the inverse into a geometric series moves the problematic integral from
the denominator to the numerator:

1
𝑃𝑘

=
1∫

U 1B𝑘 (u) d𝜇 (u)
=

1
1 − 𝑎 =

∞∑︁
𝑖=0

𝑎𝑖, (3.16)

where 𝑎 = 1 −
∫
U 1B𝑘 (u) d𝜇 (u). This expansion is legal as long as |𝑎 | < 1, which in our

case—integrating an indicator function over the unit square—is clearly satised. Unbi-
ased estimation of the reciprocal then entails repeated manifold walks with i.i.d. initial
points, denoted as 〈𝑎〉 𝑗 below:

〈1/𝑃𝑘〉 = 1 +
∞∑︁
𝑖=1

𝑖∏
𝑗=1
〈𝑎〉 𝑗 . (3.17)

Here, 〈𝑎〉 𝑗 = 0 when manifold walk 𝑗 has converged to root u(𝑘) and 〈𝑎〉 𝑗 = 1 if it has
found another root or diverged. The above expression can thus be understood as a simple
counting process: we run repeated manifold walks until u(𝑘) is found, and the number
of trials then provides an unbiased estimate of 1/𝑃𝑘 . This result can also be understood in
terms of the geometric distribution, which models the number of Bernoulli trials needed
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1 # Estimate radiance travelling from emitter position x3 to shading point x1.
2 def sms_unbiased(x1, x3):
3 # Sample a specular vertex as initial position

4 x2 = sample_seed_position(...)

5 # Run Newton solver to find valid connection

6 x∗2 = manifold_walk(x1, x2, x3)
7 # Estimate inverse probability of sampling x∗2
8 〈1/𝑃𝑘〉 = 1
9 while True:

10 # Sample vertex as above

11 x2 = sample_seed_position(...)

12 x′2 = manifold_walk(x1, x2, x3)
13 if ‖x′2 − x∗2‖ < 𝜀:

14 break

15 〈1/𝑃𝑘〉 = 〈1/𝑃𝑘〉 + 1
16 return 𝑓𝑠 (x∗2) ·𝐺 (x1↔x2↔x3) · 〈1/𝑃𝑘〉 · 𝐿e (x3) /𝑝 (x3)

Algorithm 3.2: Unbiased specular manifold sampling.

until a certain event with probability 𝑃𝑘 takes place. Here again, the expected number
of attempts is 1/𝑃𝑘 . Simulating a geometric distribution therefore provides an unbiased
estimator of the sought reciprocal and constitutes the base ingredient of our unbiased
SMS scheme, which we lay out in Algorithm 3.2.

Unbiased SMS is trivially added to any existing implementation ofMNEE. Its runtime
cost is directly linked to the “complexity” of specular paths in the scene: when the geom-
etry is relatively smooth, U contains a small number of solutions that are surrounded
by large convergence basins. Lines 3–6 then rapidly converge to a particular solution,
and only a few iterations of lines 9–15 are required to nd that same solution once more.
However, when the geometry is complex, many solutions may exist, and their conver-
gence basins also occupy smaller area in random number space. The required number of
trial iterations in lines 9–15 is a potential cause for concern in this case. Furthermore, the
variance of such an estimator for a specic solution 𝑃𝑘 based on a geometric distribution
is equal to (1 − 𝑃𝑘) / 𝑃2

𝑘
, which can become very large when 𝑃𝑘 ≈ 0.

Another fundamental issue with unbiased SMS is that a considerable amount of com-
putation is in some sense not used optimally: repeated Bernoulli trials potentially nd
many additional solutions, yet Algorithm 3.2 only cares about one bit of information:
whether or not these match the solution that was previously found in line 6. It would
be desirable that the method leverages this additional information to improve the esti-
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1 # Biased estimate of radiance travelling from emitter position x3 to

2 # shading point x1 based on trial set size 𝑀.

3 def sms_biased(x1, x3, 𝑀):

4 # Keep a set of unique solutions

5 𝑆 = {}
6 for 𝑖 = 1, . . . , 𝑀:

7 x2 = sample_seed_position(...)

8 x∗2 = manifold_walk(x1, x2, x3)
9 𝑆 = 𝑆 ∪ {x∗2}
10 # Accumulate contribution

11 result = 0
12 for 𝑙 = 1, . . . , size(𝑆):
13 result += 𝑓𝑠 (x(𝑙)2 ) ·𝐺 (x1↔x(𝑙)2 ↔x3) · 𝐿e (x3) /𝑝 (x3)
14 return result

Algorithm 3.3: Biased specular manifold sampling.

mates, but it is challenging to do without introducing bias. That said, the presence of
some bias is often acceptable if this improves other aspects, such as running time or
variance, without introducing undesirable visual artifacts in renderings. Motivated by
this, we devise a biased variant of SMS that addresses the discussed concerns.

3.2.3 Biased algorithm

The biased variant of our method (Algorithm 3.3) replaces the unbounded number
of trial iterations by a xed budget of 𝑀 samples. Furthermore, instead of sampling
one path, and then performing Bernoulli trials to estimate its reciprocal probability, we
simply cluster the 𝑀 samples into a set of unique solutions x(𝑙)2 (𝑙 = 1, . . . , 𝐿). A biased
estimate of the reciprocal is then given by the relative number of occurrences 𝑛𝑙 of each
solution, which also avoids the potential issues with a division by zero discussed earlier.
The (biased) estimator for the total throughput at shading point x1 then becomes:

1
𝑀

𝐿∑︁
𝑙=1

𝑛𝑙
𝑓 (x(𝑙)2 )
𝑝
(
x(𝑙)2

) ≈ 1
𝑀

𝐿∑︁
𝑙=1

𝑛𝑙 𝑓 (x(𝑙)2 )
𝑀

𝑛𝑙
=

𝐿∑︁
𝑙=1

𝑓 (x(𝑙)2 ). (3.18)

Compared to the original unbiased approach, this variant has a xed iteration count,
and it exploits the information provided by all samples. Note that it is consistent and
will converge to the true solution as 𝑀 → ∞. In our experiments, we observe that
the resulting bias is manifested as energy loss: regions of complex caustics that are only
rarely found by the Newton iteration appear darker, while the unbiased variant produces
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the correct intensity at the cost of substantially increased variance and runtime. We
believe that trading variance for energy loss in this way could be preferable in applied
contexts (e.g. visual eects). Section 3.4 presents a number of results contrasting the two
methods.

When setting𝑀 = 1, biased SMS is closely related to a biased version ofMNEEwhere
no MIS is applied to account for paths that cannot be sampled using the manifold walk.
The two algorithms are however not equivalent. Consider a situation where only one
valid solution exists but the straight-line initialization does not converge to it. In this
case, MNEE can produce arbitrarily high variance—or in case of point lights will miss the
contribution entirely. SMS however will still nd the solution with non-zero probability.

Another interesting aspect of the biased variant is that it generates many samples at
once. Coherence in this computation could be amenable to vectorized execution using
modern SIMD instruction sets, such as AVX512.
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valid refraction

invalid refraction

Figure 3.16: The half-vector constraint of Jakob and Marschner [116] oen produces invalid back-facing

solutions where only the projected half-vector and surface normal are equal.

3.3 Extensions

We now turn to the discussion of various extensions to our method, that either improve
convergence (as previewed in Figure 3.13) or generalize the technique to rendering of
glints.

3.3.1 Improved specular constraints

One signicant dierence of our method compared to all previous applications of man-
ifold walks is that we require the Newton solver to take very large steps starting from
an invalid state. In contrast, MNEE renders refractive caustics with a straight-line ini-
tialization that is generally already very close to the nal solution. Applications of man-
ifold walks to MCMC rendering [116, 153] only make small perturbations to existing
valid paths, in which case the Newton iteration converges rapidly. During the develop-
ment of our technique, we found that manifold walks would often converge surprisingly
poorly when initialized randomly, which led to serious convergence issues even in the
case of simple and smooth geometry (Figure 3.17). We realized that these two aspects are
related: when taking large steps, Newton iterations based on the original specular man-
ifold constraints often produce invalid back-facing solutions that impede convergence.

The main issue here is how the specular manifold constraint in Equation (3.2) en-
codes specular congurations via half-vector projections. While this term conveniently
subsumes both reective and refractive cases with one equation, the formulation does
not distinguish between front- and back-facing solutions (Figure 3.16).

We propose a new constraint function that removes this ambiguity. After choosing
between reection and transmission, note that the law of reection and refraction fully
determine the scattered direction S(𝝎, n, 𝜂). Its denition is stated previously in Equa-
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Figure 3.17: Comparison between the previous half-vector based constraint function (top) and our new

one based on angle dierences (boom). Le: 2D illustrations of the constraints. Center: For a random
initial point (red) on the sphere, the half-vector constraint converges to an invalid configuration aer three

iterations. Our improved formulation results in beer global convergence of the Newton solver. Right:
Corresponding equal-time renderings on a dielectric sphere lit by a small area light source. Manifold

walks are started at uniformly sampled positions over the glass surface. The walk success rate (SR) in the

insets is measured over the entire image, where pixels outside the caustic count as sampling failures.

tion (2.21) and depends on the incident direction𝝎, the surface normal n, and the relative
index of refraction 𝜂. When a vertex is in a valid physical conguration, its incident and
outgoing directions satisfy𝝎o = S(𝝎i, n, 𝜂). Another way of encoding specular manifold
constraints thus entails measuring the dierence between 𝝎o and S(𝝎i, n, 𝜂).

We experimented with dierent implementations of such a distance function, includ-
ing simple 1D angle measurements ∠(𝝎o, S(𝝎i, n, 𝜂)) that produce a non-square Jacobian
𝐽C requiring the use of a pseudoinverse in the Newton iterations. Ultimately, we found
that 2D constraints c𝑖 : R2 → R2 as in prior work exhibit better behavior, and we there-
fore measure a dierence in the spherical coordinates of both vectors:

c𝑖 =

(
𝜃 (−−−−→x𝑖x𝑖+1) − 𝜃 (S(−−−−→x𝑖x𝑖−1, n𝑖, 𝜂𝑖))
𝜙 (−−−−→x𝑖x𝑖+1) − 𝜙 (S(−−−−→x𝑖x𝑖−1, n𝑖, 𝜂𝑖))

)
(3.19)

where 𝜃 (𝝎) = arccos(𝜔𝑧) and 𝜙 (𝝎) = arctan2(𝜔𝑦, 𝜔𝑥 ) determine associated spherical
coordinates. Figure 3.17 showcases the signicantly improved convergence due to these
constraints. See also Appendix A for a derivation of the necessary constraint derivatives.

There are two subtle details that need to be considered when implementing Equa-
tion (3.19):
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Correct angle differenceNaïve angle difference

SR: 11% SR: 23%

Figure 3.18: Equal time comparison on a caustic from a two-bounce refraction through a dielectric cylin-

der. We compare naïve (le) and correct (right) handling of the azimuth angle dierence in the specular

constraint from Equation (3.19) which causes the manifold walk success rate (SR) to roughly double. The

brightness of the two insets below is scaled in order to make the noise reduction outside of the main

caustic more visible.

1. The scattering operation S(·) can fail in congurations with total internal reec-
tion. In such cases we are still able to evaluate the constraint for the opposite ray
direction by taking the dierence between S(𝝎o, n, 𝜂−1) and 𝝎i.

2. The subtraction of azimuth angles requires special handling due to their periodic-
ity. For instance, the Newton solver does not consider a constraint value, i.e. angle
dierence, of roughly 2𝜋 to be close to the root and might therefore not converge.
Instead, the result must be mapped onto [−𝜋, 𝜋] using a oating point modulo
operation.

While the naïve angle dierence implementation only aects the convergence rate
of the Newton solver and not the correctness of the method, this is of course detri-
mental for the overall sampling eciency. Figure 3.18 demonstrates an example
of a two-bounce refraction where this small change roughly doubles the solver
convergence rate, and thus signicantly reduces variance.
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Reflective Plane Refractive Sphere

14 SPP 12 SPP

SR: 3%SR: 12%

RMSE: 0.38RMSE: 0.15

12 SPP 9 SPP

SR: 10%SR: 31%

RMSE: 0.21RMSE: 0.07

Figure 3.19: Two scenes showing specular reflection and refraction on normal-mapped surfaces, rendered

with unbiased SMS. We show equal-time comparison (1 minute) between starting points distributed uni-

formly over the shapes (top) and our two-pass manifold walks with improved starting points (boom).

Insets show computed number of samples per pixel (SPP), root mean square error (RMSE) compared to a

converged reference, and manifold walk success rate (SR) measured over all pixels. Note how the cost of

the additional manifold walk is amortized by a faster probability estimate resulting in a similar number

of computed samples between the two methods.

3.3.2 Two-stage manifold walks

Comparing the nature of specular paths in a simple cardioid caustic (Figure 3.14) to a
reection from normal-mapped geometry (Figure 3.19, left column), we observe that the
more complex caustic is a superposition of many dierent solutions with a fairly local-
ized eect. Figure 3.20 (a) visualizes the corresponding space U that is largely empty,
and only contains a few small convergence basins that are clustered together. The prob-
ability of nding a valid solution is therefore low. Furthermore, estimating the reciprocal
probability depends on our ability to nd the same solution once more, which is even less
likely. Unbiased SMS estimates therefore tend to be slow and noisy, while biased SMS
loses a considerable amount of energy.

To address these problems, we will exploit prior knowledge to devise an improved
strategy for generating initial guesses. To motivate our approach, consider a caustic
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Figure 3.20: (a) Convergence basins of the Reflective Plane scene in Figure 3.19 (a), for one shading

point on the ground inside the caustic region. (b) Sampling density (green) of intermediate points aer

the first manifold walk in our two-pass approach, which focuses on the cluster of solutions.

generated by a smooth planar surface (e.g. a at version of the metal surface shown in
Figure 3.19). Points on this caustic all correspond to a single solution with a large con-
vergence basin inU. If we begin to make the surface more complex, e.g., by perturbing
positions or shading normals, this single solution splits into multiple nearby solutions
with disproportionately smaller convergence basins. Stronger geometric perturbations
tend to produce more solutions that are spread further apart. The aforementioned issues
with SMS could be addressed if there was a way to predict the locations of these solu-
tions and construct starting points in their proximity in a more targeted manner. We
propose a simple technique to create such a targeted initial guess for the special case of
normal-mapped surfaces5.

Our two-stage sampling approach performs two manifold walks: the rst stage ig-
nores the specied normal map and nds specular paths on the original smooth surface.
Such a smooth manifold walk will converge to a point that roughly lies at the center of
the cluster of solutions in Figure 3.20 (a). However, instead of an ordinarymanifold walk,
our rst stage relies on an oset manifold walk from Section 3.1.4, whose manifold con-
straint tilts the normal of the underlying surface. The normal perturbation is randomly
chosen from the distribution of normals that are present in the normal map. Cheaper
approximations are also usable—we use a Gaussian approximation of the entire normal
map obtained from the lowest MIP level of a LEAN map [154]. Importantly, this oset
normal is chosen before each manifold walk and does not change during the iteration
which converges rapidly and with high probability (i.e. the convergence basin is large).
This initial randomized manifold walk brings us into the proximity of the various solu-
5The high-level idea ismore general and can likely be extended to other approaches for introducing surface
detail, such as displacement maps.
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Pixel footprint

Figure 3.21: Specular manifold sampling can also find connections within a pixel footprint to render glints

that arise due to specular microstructure.

tions (green density in Figure 3.20 (b)); a second manifold walk, on the bumpy surface,
started from there takes us all the way to a solution.

Estimation of the reciprocal probability of this adapted sampling strategy is surpris-
ingly easy: the only requirement is that two-stage sampling is consistently used in both
Lines 3–6 and Lines 9–15 of Algorithm 3.2. It would generally appear that the two-stage
sampling should be more costly, but in our experiments (e.g. Figure 3.19) we observed
roughly equal performance. The reason for this is that the reciprocal probability esti-
mator requires fewer iterations to rediscover a solution. At the same time, variance is
reduced noticeably.

3.3.3 Glints

Our method generalizes straightforwardly to the problem of rendering glints, which are
minuscule subpixel reections of a light source with narrow angular support (e.g. the
sun) on high-frequency specular microgeometry.

Rendering glints using standard Monte Carlo techniques tends to be prohibitively
expensive, since millions of samples per pixel may be needed to obtain an acceptable
result.

Interestingly, the problem of nding glints is almost identical to the caustic case,
the main exception being that the search is now constrained to small surface regions
observed by individual pixels and their reconstruction lters. Previous general glint
rendering techniques [136, 137] evaluate an eective integrated BRDF over the entire
pixel footprint and produce very high quality estimates at the cost of burdensome 4D
spatio-directional hierarchies that are necessary to organize and query the distribution of

95



Chapter 3. Specular Manifold Sampling

Figure 3.22: Curved metal surface with small scratches lit by a high-frequency environment map contain-

ing multiple light sources. Weighting using MIS eectively uses each technique where it performs best:

(a) Our method (unbiased SMS) captures the direct illumination from the bright light sources inside the

scratches. (b) Standard BSDF sampling focuses on reflections from flat regions. (c) Combined result.

normals. Our goal is to implement an unbiased estimate of such a query using manifold
walks.

Our method generates random starting points within the pixel and then runs un-
biased or biased SMS to nd solutions (Figure 3.21). In contrast to prior work, which
introduced a small amount of intrinsic roughness to relax the problem, we solve the un-
modied problem with a discrete set of solutions to nd a path x̄ = x0, x1, x2 connecting
the camera to a sampled emitter position via a single6 specular reection. After tracing
the initial camera ray, we approximate the projected pixel footprint with a small paral-
lelogram based on ray dierentials [126]. We perform local manifold walks in UV space
to rene the initial guess. This leads to much higher performance compared to the caus-
tic case as no costly ray tracing operation is needed to re-project onto the surface. We
terminate paths that step outside the parallelogram since they are unlikely to nd usable
solutions. We assume that the endpoints x0 and x2 are distant, in which case changes
in the half-vector across the parallelogram are minimal and it can thus be approximated
by a constant vector. This far-eld approximation is shared by previous work, and tech-
nically biases all these techniques7. At the same time, this considerably simplies the
search for solutions: in particular, the specular manifold constraint can be simplied to
a function that attempts to equate this xed half-vector and the local shading normal,
both expressed in slope space:

c = �̃�h − ñ. (3.20)

Here, the conversion between 3D vectors v =
(
𝑣𝑥 , 𝑣𝑦, 𝑣𝑧

)𝑇 and their corresponding 2D
6Glints involving multiple specular reections on displaced geometry could in principle also be found
using manifold walks, which could be an interesting topic for future work.

7We already consider the use of a normal map instead of an actual surface to be an approximation to some
degree, and are not too concerned with this additional detail.
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slope ṽ =
(
𝑣𝑥 , 𝑣𝑦

)𝑇 is [154]:

ṽ =

(
−𝑣𝑥/𝑣𝑧
−𝑣𝑦/𝑣𝑧

)
and v =

1√︃
𝑣2𝑥 + 𝑣2𝑦 + 1

©«
−𝑣𝑥
−𝑣𝑦
1

ª®®®¬ . (3.21)

Like previous work, we use high-resolution normal maps to encode the subpixel
surface details in our scenes. In principle, the method could be extended to other types
of normal variation or actual geometric displacement.

To robustly apply our glint rendering technique in scenes with complex lighting
(e.g. high-frequency environment maps), we further combine our SMS strategy with
standard BSDF sampling using MIS (Section 2.4.4). We found it very eective to use
approximate MIS weights based on the directional distributions from the light source
and the eective BSDF of the pixel footprint provided by a LEAN map [154]. As shown
in Figure 3.22 this approach successfully separates the regions of the integrands where
one sampling strategy is preferable over the other. While precomputing a LEAN map
adds some storage overhead, it is orders of magnitude lower than Yan et al.’s spatio-
directional trees [137]. We also note that our method always renders the non-smoothed
input normal map without geometric approximations—the LEAN map is only used as a
proxy to compute an eective BSDF sampling density over a pixel footprint, enabling
unbiased combination of our sampling strategy with other standard techniques via MIS.

Our method can become impractical when the pixel footprint under consideration
covers a substantial region in texture space, e.g., when the camera observes the sur-
face from far away or the surface consists of extremely small detail. In that case, the
large number of solutions within the footprint that we need to stochastically enumer-
ate becomes troublesome: the unbiased probability estimate will have high runtime and
variance, whereas the biased variant will usually suer from high energy loss. Future
improvements to this, e.g. in the form of some preltering method [138, 154], would be
desirable.

Nevertheless, our SMS glint rendering approach shows competitive performance
against prior work in common scenarios with moderately sized footprints and vast im-
provements compared to a brute force approach—all while keeping memory require-
ments low. Example results and comparisons are shown later in Section 3.4.8.
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3.4 Results

We now present several results rendered with our method as well as comparisons to
relevant prior work. We based our implementation on the Mitsuba 2 renderer [4]. All
time measurements were recorded on a compute node with 2 Xeon 6132 processors,
each with 14 2.6 GHz cores. Many of the rendered results contain small insets with the
manifold walk success rate (SR) for the corresponding image. These numbers may seem
low at rst, but are averaged over the full image—including pixels that do not contain
any caustics for SMS to nd.

3.4.1 Integration into rendering algorithms

Specular manifold sampling is a general building block in the design of rendering algo-
rithms, and there is considerable exibility in its usage. We experimented with dierent
ways of incorporating it into a unidirectional path tracer and ultimately opted for uni-
form seed-point generation on specially marked “caustic caster” shapes. For two-bounce
caustics, shown in Section 3.4.7, the seed point on the second interface is found by tracing
a ray through the rst vertex and performing either reection or refraction depending
on the type of surface. SMS is very eective for sampling high-frequency caustic paths
from (near) specular surfaces and often greatly outperforms standard emitter or BSDF
sampling strategies. However, in the case of signicant surface roughness or smooth il-
lumination, standard strategies remain superior. Ideally, all of these strategies would be
combined via MIS to improve their robustness, as we do in Section 3.3.3 for the special
case of glints. However, determination of suitable probabilities in the more general caus-
tic setting remains an open problem. SMS iterations are also relatively expensive, and
we use them even at shading points where no possible connections exist. Conservative
criteria that specify when SMS should be used are another interesting avenue for future
work.

3.4.2 Shop window scene

Figure 3.1 showcases our method in an example involving glints and caustics on complex
geometry. It features several dierent caustics rendered using unbiased SMS: reective
caustics caused by a spotlight shining on the gold pedestals, and a two-bounce refractive
caustic from a point light hidden inside the middle pedestal. The shoes have a glittery
appearance that is rendered using biased SMS for glints. We disable caustics from higher
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2685 SPP

148 SPP

Figure 3.23: Modified version of the ShopWindow scene from Figure 3.1 where a small amount of surface

roughness is added to the previously purely specular surfaces, enabling a standard path tracer (a) to find
the same light transport paths as our proposed method (b). Both renderings are computed in equal time

(20 minutes), showing only contributions due to caustics.

order scattering (e.g. two or more bounces between the pedestals). Many of the caustics
in this scene are SDS paths that a regular path tracer cannot nd. We can still compare
to a path tracer by adding some surface roughness (Beckmann NDF with 𝛼 = 0.005)
to all specular shapes. Figure 3.23 shows such a comparison, where we only visualize
the contributions sampled by SMS. Given equal render time, our method outperforms
regular path tracing by a signicant margin.

The scene also illustrates a current limitation of our method: even though SMS can
eectively sample light connections through specular interfaces, there is still signicant
variance in the scene coming from other challenging paths, mainly the indirect light-
ing caused by the caustics; see Figure 3.23 (b) and the remaining noise in Figure 3.1.
Our method cannot sample these paths explicitly; the issue could be addressed by path
guiding methods.
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3.4.3 Specular manifold sampling

In Figures 3.24 and 3.25 we compare the eectiveness of SMS to brute-force path tracing
and the previous state-of-the-art method MNEE of Hanika et al. [132]. We examine
three scenes with challenging single-bounce caustics due to normal-mapped surfaces.
The Swimming Pool and Refractive caustic scenes are a famous examples where
both uni- and bidirectional path tracing techniques fail to discover the prominent SDS
paths that generate intricate patterns on the ground plane. MNEE improves on this but
misses all but one light connection. To stay unbiased, it has to fall back to the brute-force
strategy for the remaining paths which still causes signicant variance. Alternatively,
a biased version of MNEE can simply omit such light connections at the cost of severe
energy loss. Our method nds all paths and signicantly outperforms the others in equal
time.

The Reflective Plane scene is an example where MNEE was previously not appli-
cable. For a clearer comparison, we added a variation (called “MNEE” in quotes) that
constructs a deterministic seed path by tracing a ray from the shading point towards
the center of the object’s bounding box. Since the caustic is the superposition of many
individual solutions, this is clearly not sucient and “MNEE” ends up nding only a
very small part of the caustic. Biased versions of SMS can optionally be applied and
reduce high-frequency noise caused by the unbiased probability estimate. This comes
at a higher cost per individual sample and some energy loss, the extent of which can be
controlled by the trial set size 𝑀 . We want to highlight that the biased method is free
of artifacts and generates temporally coherent results despite its limited exploration of
a random subset of the path space.

3.4.4 Biased SMS

Our biased SMS approach involves an interesting tradeo between sample variance and
energy loss. The trial set size parameter 𝑀 plays an important role here: it directly
relates to how much eort the sampler spends per radiance estimate from caustics, and
indirectly controls howmuch of the caustic is found. We explore this eect in Figure 3.26
on the same scenes as used above. Choosing the optimal 𝑀 is currently a user choice
and could be investigated more in the future.
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Swimming Pool
PT Reference
~3.5 mil. SPP Path tracing, 976 SPP

MNEE (unbiased), 88 SPPSMS (unbiased), 52 SPP

MNEE (biased), 88 SPPSMS (biased), 28 SPP,M=4

Figure 3.24: Equal-time comparison (5 minutes) between path tracing, prior-work MNEE [132], and both

unbiased and biased versions of our proposed SMS method. Previous work can only produce (at most)

one connection to the light source via the specular interface, whereas our techniques can sample the full

range of light paths either in an unbiased or biased way. The laer removes some of the high-frequency

noise introduced by the unbiased probability estimate and trades it for energy loss based on the trial-set

size parameter 𝑀 . We report samples per pixel (SPP) computed by each method, as well as the chosen

𝑀 in the biased case. Due to the challenging light transport, the converged image (top le) is rendered

using (unbiased) SMS and only the corresponding insets are path traced references with an extremely

high sample count.
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Reflective Plane
PT Reference
~10 mil. SPP Path tracing, 3508 SPP

MNEE (unbiased), 82 SPPSMS (unbiased), 24 SPP

MNEE (biased), 82 SPPSMS (biased), 4 SPP,M=32

Refractive Sphere
PT Reference
~8 mil. SPP Path tracing, 2169 SPP

MNEE (unbiased), 134 SPPSMS (unbiased), 67 SPP

MNEE (biased), 134 SPPSMS (biased), 17 SPP,M=8

Figure 3.25: Same equal time comparison as in Figure 3.24 but on two additional test scenes.
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Figure 3.26: Comparing our biased method with varying trial set sizes 𝑀 , at equal render time of 5 min-

utes. As 𝑀 increases, each individual radiance estimate becomes more expensive but less energy of the

caustics is lost. Overlays show pixel-wise squared error compared to unbiased SMS.
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SR: 36%

18 SPP

SR: 34%

11 SPP

SR: 10%

5 SPP

SR: 6%

19 SPP

SR: 10%

9 SPP

SR: 5%

Figure 3.27: Top: Sequence of refractive spheres with increasingly complex normal maps. Boom: The

same setup, but this time with actual displaced geometry. Insets show computed number of samples per

pixel (SPP) and the manifold walk success rate (SR) measured over all pixels in the image. The manifold

walks perform about equally on both geometry types.

3.4.5 Geometric displacement

Although many of the shown results involve caustics from specular surfaces with nor-
mal maps, our method is more general, and we also found it to be eective on surfaces
with true geometric detail (e.g. from a displacement map), which we illustrate in Fig-
ure 3.27. When not using our two-stage sampling method, which is currently limited to
normal maps, manifold sampling performs equally well on both types of surfaces as con-
rmed by the similar success rates. This seems counter-intuitive at rst, since smoother
geometry should also result in a specular manifold that is easier to navigate. However,
the disagreement between actual geometry and the “fake” surface variation from nor-
mal maps can also limit the Newton solver’s eciency. The ray-tracing-heavy nature
of the manifold walks and the underlying re-projection steps lead to slightly reduced
performance in scenes with dense geometric tessellation.

3.4.6 Surface roughness

Like prior work on specularmanifolds, ourmethod generalizes to near-specular or rough
surfaces by performing oset manifold walks previously described in Section 3.3.2. Here,
we sample an oset normal from the material’s microfacet distribution before the SMS
step. The manifold walk then searches for specular connections involving that oset
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Figure 3.28: Rough reflective plane with a rough metallic surface with Beckmann normal distribution.

As the roughness 𝛼 increases from le to right, the path tracer becomes more capable of performing the

connection to the light source on specular plane directly, whereas our proposed sampling strategy loses

its eiciency. Both methods use equal render time of 5 minutes.

normal instead of the true shading normal. Only a nite number of solutions exists for
this specic oset normal, and the probability estimate of therefore remains unchanged.
Averaging over paths sampled in this manner converges to the correct solution [132].

Figure 3.28 shows a sequence of increasingly rough reective surfaces. Note how
the caustic is at rst sharp and full of high-frequency details, and becomes progressively
blurry from left to right. This blur also enables a unidirectional path tracer to nd valid
light connections more often: in the limit case, every point on the surface is contribut-
ing to the shading point. As our method handles roughness by integrating over many
perfectly specular light paths with randomized oset normals, the opposite is true for
our method and its variance increases. We only recommend using our technique for
specular or near-specular surfaces and switching over to conventional path sampling
techniques in other cases. In the future, it would be interesting to incorporate a form
of multiple importance sampling to robustly handle both extremes in addition to inter-
mediate cases. Note that the same argument applies also to scenes with low-frequency
lighting, e.g. largely constant environment maps. There, standard BSDF sampling tech-
niques become viable options of randomly intersecting the light sources.
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3.4.7 Multiple specular interactions

Like MNEE, the principle behind our method generalizes to longer chains with multi-
ple specular interactions. In Figure 3.29, we show an intricate caustic pattern caused by
double refraction through a solid displaced piece of glass. We again compare our unbi-
ased and biased SMS variants to a standard path tracer and MNEE. Multiple interactions
increase the dimension of the space of initial congurations that SMS must generate: we
could generate initial rays to start the manifold walks in the same way as before, but at
each interaction we additionally decide between reection or refraction (if applicable),
and whether or not to terminate the chain and attempt to connect to a light position. To
keep variance manageable we found it best to limit SMS to a single family of light paths
in this setting (e.g. paths of xed length with only refractive events). In cases where this
increased variance is not acceptable, the biased technique can still be applied—but for
the same reasons there will be a potentially signicant energy loss. As shown in the
Double-Refractive Slab scene, SMS can still produce good results, but better strate-
gies for sampling initial congurations will be required to turn SMS into a fully general
sampling strategy that can eciently nd all possible chains of specular interactions.

3.4.8 Glints

Figure 3.30 examines the performance of our glint rendering technique on two scenes
with complex microstructure specied using normal maps. We compare our SMS to
the state-of-the-art method of Yan et al. [137]. Both methods make use of MIS in this
comparison. The Shoes scene features a glittery pair of shoes with procedural normal
displacement by a Gaussian height eld and is lit by a sky with an almost purely direc-
tional sun. The Kettle scene involves brushed metal with very strong anisotropy. It is
illuminated by the Grace Cathedral environment map, which includes several bright and
narrow light sources. Stochastic sampling of glint solutions is benecial in these cases,
since several complementary sources of variance can be reduced at the same time.

We found the biased SMS variant to generally be more practical for glint rendering
compared to its unbiased counterpart8. The potentially unbounded number of itera-
tions in the recursive unbiased probability estimator, combined with extremely high-
frequency normal map detail, occasionally produces acute outliers in the pixel estimate
that lead to poor convergence, as seen in the plots.
8The bias here only involves the probability estimate. In practice, even the “unbiased” version will not
match a brute-force result perfectly due to the far-eld approximation.
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Double-Refractive Slab
PT Reference
~10 mil. SPP Path tracing, 1941 SPP

MNEE (unbiased), 135 SPPSMS (unbiased), 77 SPP

MNEE (biased), 135 SPPSMS (biased), 20 SPP, M=8

Figure 3.29: Equal-time comparison (5 minutes) of our method on a challenging scene where SMS samples

a light connection involving two consecutive specular refractions. The two-sided solid piece of glass is

modeled with geometric displacement.

Note that all methods in Figure 3.30 converge to slightly dierent results, but they all
nd the same individual glints and have very similar appearance overall. Our method
uses 100–300× less memory compared to previous work (e.g. 110MiB vs. 11GiB). At
the same time, it converges in an equal or shorter amount of time and still generates
temporally coherent animations.
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Shoes

SMS (biased)
2800 SPP,
110 MiB

Yan [2016]
2500 SPP,
11 GiB

PT Reference
100k SPP

Kettle

SMS (biased)
2400 SPP,
110 MiB

Yan [2016]
2400 SPP,
31 GiB

PT Reference
200k SPP

Figure 3.30: Equal-time comparison (9minutes) of our glint renderingmethod to prior work specific to this

problem [137]. Shoes scene: highly directional illumination from the sun, Kettle scene: Grace Cathedral

environment map where integration over multiple sources of variance (i.e. all the lights) is critical. Our

method yields comparable results in the first scenario and is superior in the second. At the same time,

our method requires 100–300× less memory. The insets and corresponding convergence plots focus on

dierent parts of the glinty appearance.
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3.5 Summary and future work

We introduced a simple and powerful specular path sampling technique that combines
deterministic root-nding with stochastic sampling in a pure Monte Carlo setting. The
basic method can be used in a variety of dierent ways, and we demonstrated example
applications in the context of ecient path tracing of glints and caustics. Our approach
is not restricted to unidirectional path tracing, and we contemplate its utility in bidirec-
tional and even MCMC methods, where manifold walks were originally proposed.

Building on a simple unbiased algorithm, we presented several complementary ex-
tensions and improvements. For example, better strategies for sampling seeds paths can
further improve convergence, and such heuristics are easy to integrate into our method
without introducing bias. Improved manifold constraints expand the size of the conver-
gence basins in primary sample space. A further change yields an intentionally biased
estimator with desirable properties for production usage. Far-eld approximations in
the context of specular glints lead to a particularly simple iterative algorithm, whose
steps no longer require the use of ray tracing operations. In the future, we would like to
explore further acceleration of this variant leveraging vectorized execution.

Determining when to use our method is another important aspect for future inves-
tigation. Attempting many connections that are ultimately unsuccessful can consume a
large amount of computation. While glints would benet from simple culling heuristics,
e.g. based on cones bounding the normal variation inside the pixel, the general case of
caustics from arbitrary specular geometry is signicantly more challenging. Combining
our techniques with others via multiple importance sampling in this general setting is
another pertinent problem.

Our discussion focuses mainly on the generation of subpaths with a single specular
vertex. While our method in principle also generalizes to more complex path classes
with multiple specular reection, performance using our current strategy for choosing
starting points remains suboptimal and could be an interesting topic for future work.
We wish to pursue these and related improvements, and envision a unied path sam-
pling strategy that elevates stochastic manifold walks to a standard building block in the
design of Monte Carlo rendering methods.
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4 | Monte Carlo Estimators for
Dierential Light Transport

FD
reference Detached

Reparam.
attached

Diff.
detatchedPrimal rendering

Figure 4.1: Dierentiable rendering of a scene featuring specular interreflection betweenmetallic surfaces

of varying roughness. We dierentiate the image with respect to the combined roughness of all objects,

which produces the gradients shown in the first column with insets (computed using finite dierences

and an impractically high sample count). A disconcertingly large number of dierential estimators can

solve this problem, albeit with drastically dierent statistical eiciency: the following columns highlight

the standard deviation of MIS estimators involving emier sampling and three dierent strategies based

on BSDF sampling. An overview of the exhaustive set of combinations (21 methods) and results for an

additional five estimators are provided later in Section 4.5, which also contains uncropped images. The

objective of our work is to provide intuition on how to navigate the large design space of dierential

Monte Carlo estimators.

We now transition from the discussion of specular light paths in the context of forward
rendering to the inverse rendering problem.

As extensively discussed in Chapter 2, image formation is generally the result of the
complex interplay of shape, illumination, and materials, in which indirect eects like
shadowing and interreection couple distant parts of the scene: a bright spot on a surface
could, e.g., be explained by texture or shape variation, illumination from a light source,
or focused reection from another object. Resolving this ambiguity requires multiple
observations and reconstruction techniques that account for the interconnected nature
of light transport and scattering.

In this chapter, we study themathematical principles of dierentiable rendering, which
formulates the inversion process as a gradient-based optimization task dened on a high-
dimensional domain with millions of scene parameters specifying illumination, shapes,
and materials. Scene parameter derivatives of a rendered image encode important cues
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that can be used to unravel this radiative coupling.
So far, the creation of dierentiable rendering algorithms has followed a fairly rigid

sequence of steps: derivatives are rst moved into light transport integrals solved by a
standard method (e.g. path tracing), possibly with extra steps to handle visibility-related
discontinuities. Subsequent dierentiation of the integrand involves the standard rules
of calculus and can be performed by hand, or using software-based techniques for auto-
matic dierentiation (AD).

While this approach generally works, we observe that dierentiation fundamentally
changes the nature of the underlying integrals. A scene parameter can be sensitive in the
sense that a small perturbation of its valuewould lead to a signicant positive or negative
change in the value of the integrand that aects the rendered image and optimization ob-
jective. Monte Carlo theory then tells us that a low-variance gradient estimator should
place a proportional number of samples into this region. However, this type of adap-
tation is simply impossible when the dierential rendering algorithm is rigidly created
from its primal counterpart. In the worst case, the sensitive region could even be zero-
valued and discarded during primal integration, in which case the dierential algorithm
is biased.

Recent work by Nimier-David et al. [155] proposed a method termed radiative back-
propagation (RB), which casts dierentiable rendering into the form of an adjoint (i.e. re-
versed) transport problem that propagates derivative “radiation” from sensors towards
objects with dierentiable parameters. Their formulation decouples the primal and dif-
ferential estimators and provides the starting point for our investigation. This decou-
pling brings considerable additional freedom but also reveals that elementary aspects of
dierentiable rendering remain poorly understood. In this chapter, we investigate the
following choices that guide the design of dierential transport estimators:

1. Estimators that apply importance sampling often do so using the inversionmethod,
which involves a mapping to transform uniform variates to the target distribution.
When creating the dierential estimator, thismapping could remain unchanged, or
it could be dierentiated along with the integrand. We refer to these respectively
as detached and attached strategies. The former produce static samples, while
the latter capture the innitesimal motion of samples with respect to parameter
changes.

2. Sampling strategies are almost never used alone, but in combination with others
via the framework of multiple importance sampling (MIS). Once more, the primal
MIS weights could be used as-is or dierentiated to track innitesimal changes.
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3. Sampling strategies are designed to approximate the shape of the associated inte-
grand, but this property may no longer hold following dierentiation regardless of
whether attached or detached strategies are used. In such cases, it may be possible
to design tailored strategies that match this new integrand, which we refer to as
dierential strategies. We propose one such strategy for the commonly used family
of microfacet models. Our analysis demonstrates clear benets of specialized dif-
ferential strategies, while the trade-os between detached and attached sampling
remain more nuanced and problem-dependent.

4. Visibility-related discontinuities require careful treatment to avoid bias in com-
puted gradients. We explain how recent techniques that are designed to sidestep
this issue [73, 156] can be adapted to the adjoint framework of RB, enabling e-
cient and unbiased geometric optimization.

5. Not all options are compatible with each other: some estimator combinations of
attached/detached MIS weights and attached/detached sampling strategies yield
biased results, and attached sampling strategies can interfere with techniques to
handle discontinuous integrals. We show how sampling strategies can simultane-
ously be attached yet behave correctly in the presence of discontinuities.

6. Finally, rendering algorithms frequently take discrete random decisions includ-
ing path termination via Russian roulette and sampling of multi-lobed BSDFs.
We show that these steps should never be dierentiated, as this would severely
bias their result.

After discussing the relevant previous work in Section 4.1, the remainder of this chapter
provides a taxonomy of dierential Monte Carlo estimators based on this bewilderingly
large set of possibilities. Figure 4.1 shows a preview of three such estimators with very
dierent statistical eciency.
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4.1 Background

Inverse rendering is a standard problem in computer vision, where a considerable body
of prior work has investigated ways of dierentiating the process of image formation.
Eects like shadows, interreections, depth of eld, or global illumination in general
have historically played a lesser role during this process, and related works investigat-
ing dierentiable rasterization of meshes and volumes thus mainly focus on primary
visibility [157, 158, 159, 160, 161, 162].

As we are interested in dierentiating physically based rendering algorithms, includ-
ing support for such indirect eects, we consider Monte Carlo sampling of integrals of
the form

𝐼 (𝝅) =
∫
X
𝑓 (x, 𝝅) d𝜇 (x), (4.1)

where 𝝅 refers to a set of scene parameters. The domain X typically consists of light
paths connecting a light source to a sensor via a number of intermediate scattering
events. In this work, we are concerned with individual (hemi-)spherical integrals that
may reference nested integrals, hence we set X = S2. We have not investigated path-
space methods [163, 164], though we suspect that many of our observations will gener-
alize.

Physically based dierentiable rendering algorithms [4, 165, 166] estimate the partial
derivative of the above integral with respect to 𝝅 :

𝜕𝝅 𝐼 (𝝅) = 𝜕𝝅

[∫
X
𝑓 (x, 𝝅) d𝜇 (x)

]
, (4.2)

where we use a shorthand notation 𝜕𝝅 := 𝜕/𝜕𝝅 from now on.
Indirect eects are especially important when optimizing materials like participat-

ing media that are characterized by signicant multiple scattering [164, 167, 168, 169,
170, 171]. Initial work on physically based dierentiable rendering relied on forward
mode dierentiation to propagate an innitesimal perturbation through the simulation,
requiring a separate run for each parameter of interest. Later techniques applied reverse
mode dierentiation [4, 165] to compute derivatives with respect to all scene parameters
at once.

Reverse mode dierentiation is a widely used tool [115] that greatly improves the
eciency when many derivatives are desired, but it also introduces its own set of prob-
lems: derivative evaluation now requires access to intermediate steps of the primal com-
putation, and this sequence of accesses furthermore occurs in reverse order compared
to the original program execution. Program reversal is impractical without at least some
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temporary storage of primal variables, and the size of this scratch space tends to be
overwhelming in the context of rendering.

The radiative backpropagation (RB) method [155] addresses this issue by observing
that the derivative program eectively solves a separate type of transport problemwhere
derivative “radiation” that corresponds to the derivative of the objective in pixel space
is “emitted” from the camera, “scatters” from scene objects, and is eventually “received”
by dierentiable scene objects that now take the role of the sensor. Instead of being
constrained by the inexibility and memory overheads of automatically dierentiating
a primal algorithm in reverse mode, one can thus create dierential algorithms that di-
rectly solve this modied transport problem. Our work builds on this idea and leverages
the decoupled nature of primal and dierential phases.

Naïvely dierentiating light transport generally leads to severely biased gradients
due to discontinuities inside the associated integrals, e.g. due to visibility changes at
object boundaries in the common case of dierentiating scene geometry parameters.
One solution to this is explicit sampling of a boundary integral over silhouette edges in
the scene, as originally proposed by Li et al. [165] and later extended by Zhang et al.
[163]. Alternatively, Loubet et al. [156] show how to solve the same problem purely
with interior integrals by applying a change of variables. Their approach introduces
bias, but this limitation was later overcome by a more general approach by Bangaru et al.
[73]. Recently, Zhou et al. [172] also proposed an analytical and dierentiable visibility
computation approach based on beam tracing [173]. However, none of these techniques
are readily usable in the framework of RB. We show how the method of Bangaru et al.
can be used as a reparameterization that is queried as part of a memory-less reverse
mode dierentiation procedure.

Interestingly, bias due to discontinuities can also arise from attached sampling strate-
gies, which happens even when geometry is not part of the optimization process! We
introduce a modied parameterization that addresses this problem.

Concurrently to our analysis, Vicini et al. [174] propose algorithms that can evaluate
attached and detached dierential estimators using linear time and constant space com-
plexity. These are mostly orthogonal to the topics discussed in this chapter, and both
works can be combined.

We want to point out that a dierentiable renderer is useful beyond mere optimiza-
tion. It is also useful when rendering occurs as a part of a larger dierentiable calcula-
tion such as a neural autoencoder or generative adversarial network. However we do
not pursue this direction in this thesis.

114



Chapter 4. Dierential Monte Carlo Estimators

Derivatives of Monte Carlo simulations have also been used outside of rendering,
to model the criticality of nuclear reactors [175], and to perform inverse modeling of
tissue [176]. These types of methods are named Perturbation Monte Carlo or Dierential
Monte Carlo.

We now look at the mathematical background of inverse and dierential light trans-
port more closely. First, we look at how dierentiation is used to solve inverse rendering
problems via gradient-based optimization (Section 4.1.1). We also review the radiative
backpropagation algorithm by Nimier-David et al. [155] (Section 4.1.2) and discuss the
problem of discontinuities in much more detail (Section 4.1.3).

4.1.1 Inverse rendering overview

While forward rendering generates an image I(𝝅) from a number of scene input param-
eters 𝝅 ∈ Π, inverse rendering problems attempt to recover parameters that produce an
image which minimizes a given loss or objective function ℓ (·):

𝝅∗ = argmin
𝝅

ℓ (I(𝝅)) (4.3)

Mathematically, the output of image formation is simply a vector that collects the mea-
surements (2.47) of all image pixels I(𝝅) = (𝐼1(𝝅), . . . , 𝐼𝑛 (𝝅))𝑇 , here written with an
explicit dependence on a vector of scene parameters 𝝅 = (𝜋1, . . . , 𝜋𝑝)𝑇 .

The loss function is problem specic; simple examples could be the standard L1 or
L2 loss based on one or multiple target images. However, more complex objectives, e.g.
based on a black-box neural network, are also conceivable.

Due to the complex nature of light transport (Section 2.3), direct solutions to Equa-
tion (4.3) are usually out of the question and we instead use nonlinear optimization tech-
niques such as gradient descent. Starting from an initial guess 𝝅(0) , we then follow the
direction of steepest descent on the loss landscape as given by the parameter gradients.
This process potentially repeats many times. The update equation of the most basic
descent scheme reads

𝝅(𝑖+1) = 𝝅(𝑖) − 𝛾 · ∇ℓ (I(𝝅)) = 𝝅(𝑖) − 𝛾 ·
(
𝜕ℓ

𝜕𝝅

)𝑇
, (4.4)

where 𝝅(𝑖) is the parameter state at iteration 𝑖 and 𝛾 is the learning rate or step size. Note
that we are technically performing a form of stochastic gradient descent in practice, as
the computed parameter gradients are usually contaminated by Monte Carlo noise. An
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Target imageCurrent image

Render

Loss function

Iterate
Scene parameters

Figure 4.2: The typical optimization loop found in inverse rendering applications. A set of (initial) scene

parameters 𝝅 passes through a rendering system, producing an image I(𝝅). Following comparison to

a reference (using a loss function ℓ), the gradient 𝜕ℓ/𝜕𝝅 is computed and used to update the parameter

state. Under reasonable assumptions on the step size, repeated iterations of this process will converge to

a (local) optimum according to ℓ .

alternate option is the ADAM optimizer [177] that additionally applies momentum and
scales the step size based on each parameter’s variance.

If the step size is chosen suciently small, either of these approaches usually con-
verge to a local optimum. Unfortunately, the loss landscapes of inverse rendering prob-
lems are rarely convex, and thus, the procedure does often not converge to a global

optimum. It is advantageous to either add regularization to this process (e.g. by adding
terms to the loss function that penalize undesired characteristics of a solution) or to start
with a good initial guess to avoid local minima1.

An overview of the standard optimization loop for inverse rendering is shown in
Figure 4.2. We now turn to the actual computation of the required parameter gradients

𝜕ℓ

𝜕𝝅
=
𝜕ℓ

𝜕I
· 𝜕I
𝜕𝝅

(4.5)

from Equation (4.4), which can intuitively be understood as the sensitivity of the input
parameters due to a change in the loss. The rst term in the product is relatively simple:
it is a row vector of dimension 𝑛, i.e. the number of image pixels. The second term is a
Jacobian matrix of size𝑛×𝑝 . Recall that we would like to jointly optimize a large number
(e.g. millions) of parameters and that, in principle, each parameter can aect each image
pixel due to global illumination. This means, the required matrix is both dense and large
1We note that, in principle, it would be desirable to use more sophisticated optimization approaches (e.g.
Newton’s method) that have better convergence rates. However, they require higher order derivative
terms which are prohibitively expensive to compute.
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Figure 4.3: Two examples of (false color) gradient images that show changes of pixel intensities due to

infinitesimal changes to individual parameters. Top: A change of the table surface roughness parameter.

Most of the image is aected by this as the table reflects large parts of the incident illumination into the

rest of the scene. Boom: Translation of the rook piece to the le. Even this causes a global eect due

to its shadow and reflections.

in practice, which makes its computation troublesome. As outlined in Section 2.6 there
are two main approaches to sidestep a full matrix computation.

Applying forward dierentiation to 𝜕I/𝜕𝝅 generally requires 𝑝 separate rendering
passes, i.e. one per scene parameter. For example, each pass could compute a column
of this matrix in the form of a gradient image. This is conceptually simple and could
even be accomplished with nite dierences (in that case requiring 2𝑝 passes), but is
clearly not suited for our optimization task where 𝑝 is commonly very large. However,
gradient images are valuable tools during the development of dierentiable rendering al-
gorithms as they can help to better understand and visualize the sensitivity of the pixel
intensities based on individual inputs. We show two such examples in Figure 4.3 which
also illustrate how potentially the whole image can be aected by a change to a single
input.

In contrast, reverse mode dierentiation is much better suited for this problem: start-
ing from the loss output, a single backward pass is sucient to compute all required
parameter gradients. This however comes with the downside of requiring storage of all
intermediate results of the program in form of a computation graph.
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Sensor plane

Figure 4.4: Le: An illustration of dierentiating light transport based on a single scene parameter. In

this specific case, we perform an infinitesimal change to the color of the bishop piece. This causes it to

“emit” dierential radiance (visualized in red) into the scene which then scaers like normal radiance.

Right: A forward mode rendering approach that generates a corresponding gradient image bymeasuring

dierential radiance arriving at the pixels of the sensor.

There is an important detail here that was noted by Gkioulekas et al. [168] and Azi-
nović et al. [166]: both the forward rendering (used during the computation of the loss)
and the reverse pass through the program are usually a form of Monte Carlo integration
that use a shared random number state. But this introduces undesirable correlation be-
tween the two terms in Equation (4.5). This means the expectation of their product is
no longer equal to the product of their individual estimates (E[𝑋 ·𝑌 ] ≠ E[𝑋 ] · E[𝑌 ], see
Section 2.4.1). We therefore need to compute the rendered image twice using dierent
random number generator seeds, where the reverse pass that propagates gradients is
only performed after running the forward rendering process for the second time.

4.1.2 Radiative backpropagation

Unfortunately, naïve application of reverse mode dierentiation to a full light transport
algorithm (e.g. path tracing) leads to serious scalability issues. The bookkeeping and
traversal of the computation graph incur signicant computational overhead that would
dominate the computation if done separately for each of the millions of light paths that
must be traced to generate a typical image.

This type of overhead can, however, be reduce by batching Monte Carlo samples us-
ing a variant of AD termed vector mode [115], in which the additional bookkeeping cost
can be eectively amortized. In the context of rendering, this entails tracing wavefronts
of light paths [178].

118



Chapter 4. Dierential Monte Carlo Estimators

Unfortunately, this turns out to be extremely memory intensive. The memory foot-
print grows with the image resolution, the number of Monte Carlo samples, and the
length of the simulated paths. Relatively modest settings for these parameters can easily
cause the computation to exceed the available memory, even on high-end GPUs [4, 155],
which hinders scalability beyond small toy problems. Recently, Nimier-David et al. [155]
introduced the radiative backpropagation (RB) algorithm, a more practical approach for
reverse mode gradient propagation that is inspired by the adjoint sensitivity method
from the area of optimal control [179, 180]. The authors investigate what dierentiation
actually does to the underlying light transport problem and propose a specialized back-
propagation technique that avoids the costly storage overheads.

Consider again the three fundamental light transport equations previously discussed
in Section 2.3.1:

1. Measurement:

𝐼𝑘 =

∫
M

∫
S2
𝑊
(𝑘)
e (x,𝝎) 𝐿i(x,𝝎) dΩ⊥x (𝝎) d𝐴(x) (4.6)

2. Transport:

𝐿i(x,𝝎) = 𝐿o(r(x,𝝎),−𝝎) (4.7)

3. Scattering:

𝐿o(x,𝝎o) = 𝐿e(x,𝝎o) +
∫
S2

𝑓𝑠 (x,𝝎i→𝝎o) 𝐿i(x,𝝎i) dΩ⊥x (𝝎i) (4.8)

Nimier-David et al. transform these equations by applying derivatives on both the left
and right hand sides. This yields a new set of “physical” statements that will be instruc-
tive to nd methods for more ecient gradient propagation. To be more precise, the
next three equations can be interpreted as describing the transport of an alternate, hy-
pothetical quantity called dierential radiance 𝜕𝝅𝐿. Like its ordinary counterpart, it also
exists in incident, outgoing, and emitted variants 𝜕𝝅𝐿i, 𝜕𝝅𝐿o, and 𝜕𝝅𝐿e. We now discuss
these three new energy balance equations in turn:

1. Dierential measurement: Measurement of dierential radiance is equivalent
to the case of normal radiance, assuming the sensor itself is not being dierenti-
ated, i.e. 𝜕𝝅𝑊 (𝑘)

e (x,𝝎) = 0:

𝜕𝝅 𝐼𝑘 =

∫
M

∫
S2
𝑊
(𝑘)
e (x,𝝎) 𝜕𝝅𝐿i(x,𝝎) dΩ⊥x (𝝎) d𝐴(x). (4.9)
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2. Dierential transport: Dierential radiance also propagates normally, i.e. its
value remains unchanged between surface points along a ray:

𝜕𝝅𝐿i(x,𝝎) = 𝜕𝝅𝐿o(r(x,𝝎),−𝝎). (4.10)

3. Dierential scattering: This is the most interesting part, as applying the product
rule to the ordinary rendering equation creates three new terms

𝜕𝝅𝐿o(x,𝝎o) = 𝜕𝝅𝐿e(x,𝝎o) (T1)

+
∫
S2

𝜕𝝅 𝑓𝑠 (x,𝝎i→𝝎o) 𝐿i(x,𝝎i) dΩ⊥x (𝝎i) (T2)

+
∫
S2

𝑓𝑠 (x,𝝎i→𝝎o) 𝜕𝝅𝐿i(x,𝝎i) dΩ⊥x (𝝎i) (T3) (4.11)

with the following interpretations:

T1. Dierential radiance 𝜕𝝅𝐿o is “emitted” not from the usual emission term 𝐿e,
but its dierential version. This is non-zero whenever emission changes as
a result of a dierentiated scene parameter, e.g. a light source changes its
intensity.

T2. Dierential radiance is also “emitted” due to changing BSDF parameters. This
depends additionally on the (ordinary) incident radiance 𝐿i. This is intuitive
as changingmaterial parameters of a brightly lit object has a greater inuence
on the nal image compared to one that sits in a dark corner of the scene.

T3. Dierential radiance scatters just like ordinary radiance based on the normal
BSDF 𝑓𝑠 .

These similarities to forward rendering suggest that we can perform forward mode dif-
ferentiation by running another light transport simulation with an algorithm analogous
to path tracing. Paths are generated from the sensor side and we use Monte Carlo in-
tegration to approximate the integral terms above. This ultimately generates a gradient
image, as long as we can evaluate the (local) derivative terms 𝜕𝝅𝐿e and 𝜕𝝅 𝑓𝑠 , e.g. via AD.
An abstract illustration is shown in Figure 4.4.

As discussed, forward mode dierentiation is not well-suited for the type of opti-
mization tasks we aim to solve—but the remarkable insight behind RB is that we can
also cast the reverse mode propagation of gradients into a similar light transport formu-
lation.
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Sensor plane

Target imageCurrent image

Loss function

Adjoint image

Figure 4.5: A loss function ℓ is used to compare a current state of the optimization against a given target

image. A simple backpropagation through ℓ gives the adjoint rendering 𝜹I, which encodes how each

pixel should change to improve the loss. These values are then “emied” into the scene from the camera.

Finally, when adjoint radiance interacts with scene objects, its value is backpropagated to the correspond-

ing (dierentiable) scene parameters.

Recall Equation (4.5) from earlier. In reverse mode, we want to propagate a pertur-
bation of the scalar image loss 𝜹ℓ rst to an intermediate result

𝜹I =
(
𝜕ℓ

𝜕I

)𝑇
· 𝜹ℓ (4.12)

called the adjoint rendering. This is a straightforward application of the chain rule to
the loss function, see Figure 4.5. The subsequent step is much harder as it needs to
backpropagate to the scene parameters through the rendering process:

𝜹𝝅 =

(
𝜕I
𝜕𝝅

)𝑇
· 𝜹I =


𝜕𝐼1
𝜕𝜋1
· · · 𝜕𝐼𝑛

𝜕𝜋1
...

. . .
...

𝜕𝐼1
𝜕𝜋𝑝
· · · 𝜕𝐼𝑛

𝜕𝜋𝑝

 · 𝜹I. (4.13)

As mentioned previously, the Jacobian matrix here is generally dense and a full compu-
tation is infeasible. We can however substitute the dierentiated measurement equation
(4.9) which gives us(

𝜕I
𝜕𝝅

)𝑇
· 𝜹I =

𝑛∑︁
𝑘=1

𝜹I𝑘 · 𝜕𝝅 𝐼𝑘

=

∫
M

∫
S2

[
𝑛∑︁

𝑘=1
𝜹I𝑘 ·𝑊 (𝑘)

e (x,𝝎)
]
𝜕𝝅𝐿i(x,𝝎) dΩ⊥x (𝝎) d𝐴(x), (4.14)

where 𝜹I𝑘 represents the 𝑘-th pixel of the adjoint rendering.
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Nimier-David et al. observed an interesting symmetry relationship here between dif-
ferential radiance 𝜕𝝅𝐿 and yet another new quantity which they call adjoint radiance2:

𝐴𝑒 (𝜹I, x,𝝎) :=
𝑛∑︁

𝑘=1
𝜹I𝑘 ·𝑊 (𝑘)

e (x,𝝎). (4.15)

This quantity can be understood as being “emitted” into the scene from the side of the
sensor. It then scatters through the scene until it is eventually “received” by objects
whose parameters are being dierentiated. In practice, this is a backpropagation step
through either the 𝜕𝝅𝐿e or 𝜕𝝅 𝑓𝑠 terms in Equation (4.11). In other words, this performs
a (transposed) Jacobian-vector product—but this time with a very sparse matrix where
only the local emitter or BSDF parameters are involved, e.g. nearby texels involved in a
query of a textured BSDF. Figure 4.5 illustrates the high-level idea.

An implementation of RB is strikingly similar to a standard unidirectional path tracer.
We show pseudocode of a basic version of the algorithm in Algorithms 4.1 and 4.2. The
notation adjoint([[ <expr> ]], grad_out) is reused fromNimier-David et al. [155]
and refers to the reverse mode derivative of an expression <expr> that backpropagates
a gradient with respect to its output (grad_out) towards the scene parameters 𝝅 , while
returning another gradient that results from this step. Please refer to the original publi-
cation for more details about the derivation and implementation of RB.

Radiative backpropagation enjoys a number of advantages compared to standard re-
verse mode dierentiation of a rendering algorithm:

1. The method does not require memorization of all intermediate variable values
computed during the primal rendering phase.

2. As a consequence, we also do not need to fall back to wavefront rendering in order
to amortize costly graph creation and traversal. Instead, RB can be implemented
in a megakernel style that keeps memory usage extremely low, see Nimier-David
et al. [155].

3. Because the gradient propagation step is now decoupled from the primal program
execution that renders an image, we can be more conscious about how we solve
the equations above. Many techniques known from forward rendering could now
be repurposed for the dierentiated integrals. Our analysis in this chapter is one
of the rst instances where we explore this direction and we will discuss some of
these new possibilities in detail later in Sections 4.2 and 4.3.

2This is closely related to the relation between radiance and importance in ordinary light transport, see
Section 2.3.4.
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1 def radiative_backprop(𝝅, 𝜹I):
2 # Initialize parameter gradient(s) to zero

3 𝜹𝝅 = 0
4 for _ in range(num_samples):

5 # Sample ray proportional to sensor response and pixel filter

6 (x, 𝝎), s_weight = sensor.sample_ray()

7 # Query adjoint emitted radiance associated with current ray

8 A_e = 𝐴e (𝜹I, x,𝝎) / num_samples

9 # Propagate adjoint radiance into the scene

10 𝜹𝝅 += radiative_backprop_Li(𝝅, x, 𝝎, A_e * s_weight)

11 # Finished, return gradients

12 return 𝜹𝝅

Algorithm 4.1: Radiative backpropagation takes scene parameters 𝝅 and an adjoint rendering 𝜹I as input.
This pseudocode fragment is responsible for the measurement integral. It samples a set of sensor rays,

queries the associated emied adjoint radiance 𝐴𝑒 and propagates these gradients into the scene.

1 def radiative_backprop_Li(𝝅, x, 𝝎, 𝜹𝐿):

2 # Find an intersection with the scene geometry

3 x′ = r(x,𝝎)
4 # T1: Backpropagate to emitter parameters, if any

5 𝜹𝝅 = adjoint([[ 𝐿e (x′,−𝝎) ]], 𝜹𝐿)

6 # Sample a direction from the BSDF

7 𝝎 ′, b_val, b_pdf = sample 𝑓𝑠 (x′,𝝎 ′→−𝝎)
8 # T2: Backpropagate to parameters of BSDF, if any

9 𝜹𝝅 += adjoint([[ 𝑓𝑠 (x′,𝝎 ′→−𝝎) ]], 𝜹𝐿 * 𝐿i (x,𝝎 ′) / b_pdf)

10 # T3: Recurse to account for indirect differential radiance

11 return 𝜹𝝅 + radiative_backprop_Li(𝝅, x′, 𝝎 ′, 𝜹𝐿 * b_val / b_pdf)

Algorithm 4.2: This pseudocode fragment provides radiative_backprop_Li() referenced in Algo-

rithm 4.1. It implements the RB version of the transport and scaering equation that transports deriva-

tives through the scene and backpropagates adjoint radiance 𝜹𝐿 to objects with dierentiable parameters.
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In its originally proposed form, RB also suers from some limitations however. When
backpropagating adjoint radiance to the BSDF parameters we need to evaluate the (ordi-
nary) incident radiance at that location, see the 𝐿i term as part of (T2) in Equation (4.11)
and Line 9 of Algorithm 4.2. This requires that we perform another recursive Monte
Carlo estimation at each path vertex, e.g. by referring to a normal path tracer. As a re-
sult, RB has quadratic run time complexity in the length of simulated light paths. This is
especially concerning in scenes where many bounces of global illumination are required.
This problemwas recently addressed by Vicini et al. [174] with the path replay backprop-
agation algorithm. This manages to compute gradients in linear time by replaying light
paths sampled during an additional primal rendering step in reverse.

So far we also neglected a very important corner case of dierentiable rendering:
the integrals we want to solve are generally riddled with discontinuities in the incident
radiance (e.g. due to object silhouettes and visibility changes), and the position of these
discontinuities furthermore depends on the scene parameters 𝝅 that are to be dierenti-
ated. Dierentiation under the integral sign is invalid under these conditions and actu-
ally produces severely biased results. We will now discuss this issue in-depth, including
the approaches taken by previous work. Later in Section 4.4, we will combine these ideas
with the RB algorithm to also enable support for discontinuities in this framework.

4.1.3 Geometric discontinuities

In order to study the issue of discontinuities, we return to a more general setting where
we dierentiate an integral of a function 𝑓 over the domain X:

𝜕𝜋 𝐼 = 𝜕𝜋

∫
X
𝑓 (x, 𝜋) d𝜇 (x). (4.16)

For conceptual and notational simplicity, we will from now on simply look at the deriva-
tive with respect to a single parameter 𝜋 , even though our nal algorithms will evaluate
all derivatives at once.

When computing gradients, we might be inclined to simply exchange the order of
integration and dierentiation

𝜕𝜋

∫
X
𝑓 (x, 𝜋) d𝜇 (x) ?

=

∫
X
𝜕𝜋 𝑓 (x, 𝜋) d𝜇 (x). (4.17)

In case the integrand 𝑓 is discontinuous, this only computes an incomplete version of the
desired gradients. To be more precise, the presence of discontinuities is not problematic
in itself: bias arises only due to the dependence of their position on the parameter 𝜋 ,
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(a) Naïve sampling (b) Edge sampling (c) Reparameterization

Figure 4.6: We consider integration of a function over S2
where infinitesimal movement of geometry

causes a parameter dependent discontinuity. (a) The function value at sample locations is discontinuous

and Monte Carlo integration does not capture the gradient due to the moving geometry. (b) Edge sam-

pling [165] performs explicit integration over the discontinuity boundaries by placing samples on object

silhouees. (c) Reparameterization [156] re-writes the integral in order to freeze discontinuities in place.

This can also be viewed as making the sample locations follow along with the discontinuity boundaries.

as pointed out by Loubet et al. [156]. In dierentiable rendering, this case is extremely
common however. Examples of such parameters include camera pose, object transfor-
mations, vertex positions, etc. The problem is also readily apparent when considering
that we use Monte Carlo point samples in order to approximate these integrals. Discon-
tinuities in the integrand lie on curves with probability measure zero and are therefore
not sampled, see Figure 4.6 (a).

A full solution to Equation (4.16) is found by applying the Reynolds transport theo-
rem [163, 171], which introduces an additional boundary correction term that integrates
over the parameter dependent edges 𝜕X(𝜋) explicitly:

𝜕𝜋 𝐼 =

∫
X
𝜕𝜋 𝑓 (x, 𝜋) d𝜇 (x) +

∮
𝜕X(𝜋)
𝑓 (x, 𝜋) 〈𝜕𝜋x, n̂〉 d𝜇 (x). (4.18)

Here, n̂ denotes the normal direction of the edge at x ∈ 𝜕X(𝜋). Li et al. [165] were the
rst to propose a solution based on this expression by importance sampling the set of sil-
houette edges observed from a given scene location, see Figure 4.6 (b). However, existing
data structures for this sampling step exhibit poor scaling as the geometric complexity of
a scene grows. Zhang et al. [163] revisit this in a higher-dimensional path space, which
provides access to additional edge sampling strategies.

An alternative approach was proposed by Loubet et al. [156]. They apply a change
of variables based on a bijective (re-)parameterization 𝑅 : X × Π → X of the domain X
that freezes discontinuities in place. Note that it must necessarily depend on the scene
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parameters to accomplish this task and it also introduces a Jacobian determinant |𝐽𝑅 | that
ensures the integral result is unchanged, by accounting for any expansion or contraction
of the domain. Following this change, the partial derivative can then safely be moved
into the integral:

𝜕𝜋 𝐼 =

∫
X
𝜕𝜋

[
𝑓 (𝑅(x, 𝜋), 𝜋) |𝐽𝑅 (x, 𝜋) |

]
d𝜇 (x). (4.19)

Since the boundary correction is no longer needed, this integration only involves stan-
dard interior estimators. An alternative interpretation of this is that Monte Carlo sam-
ples of Equation (4.19) now have a new dependency on 𝜋 and follow the discontinuity
boundaries with changes of 𝜋 , see Figure 4.6 (c). The specic change of variables pro-
posed by Loubet et al. is approximate, however: it only rotates the spherical domain and
cannot counteract all silhouette motion unless it perfectly matches a spherical rotation
as well.

Recently, Bangaru et al. [73] observed that the divergence theorem can be applied to
Equation (4.18), turning the troublesome boundary integral into another interior integral

𝜕𝜋 𝐼 =

∫
X
𝜕𝜋 𝑓 (x, 𝜋) d𝜇 (x) +

∫
X
∇x · (𝑓 (x, 𝜋) 𝑉 (x, 𝜋)) d𝜇 (x), (4.20)

where the warp eld 𝑉 (x, 𝜋) smoothly interpolates the boundary velocity 𝜕𝜋x from
Equation (4.18). This formulation is ultimately shown to be equivalent to the change of
variables approach of Loubet et al. In particular, the new divergence term directly cor-
responds to the derivative of the Jacobian in Equation (4.19), and there is a one-to-one
correspondence between warp elds and parameterizations of integrals. An important
contribution of Bangaru et al. [73] is the construction of a warp eld that smoothly tends
to the correct velocity as one approaches a boundary. In the formulation using reparam-
eterization, this can be interpreted as correctly counteracting all boundary motion.

In Section 4.4 we will show how to combine such an approach with the radiative
backpropagation algorithm. For this reason, we will rst review the relevant details
more closely, in particular, how the improved reparameterization of Bangaru et al. is
dened.

Spherical reparameterization. Both prior works [73, 156] consider integrals over
the unit sphere X = S2:

𝜕𝜋

∫
S2

𝑓 (𝝎, 𝜋) dΩ(𝝎) = 𝜕𝜋

∫
S2

𝑓 (𝑅(𝝎, 𝜋), 𝜋) · |𝐽𝑅 (𝝎, 𝜋) | dΩ(𝝎) . (4.21)

In this case, |𝐽𝑅 | denotes the Jacobian determinant that counteracts the change in spheri-
cal area due to the mapping 𝑅. Similarly to Loubet et al., 𝑅 is chosen such that it satises

126



Chapter 4. Dierential Monte Carlo Estimators

𝑅(𝝎, 𝜋0) = 𝝎, where 𝜋0 is a variable matching the (primal) value of 𝜋 , but that does not
participate in the dierentiation. As a result, the change of variables does not aect the
primal integral and only changes the gradient computation.

Furthermore, 𝜕𝜋𝑅(𝝎, 𝜋) = 𝜕𝜋𝑃 (𝝎, 𝜋) where 𝑃 : S2 × Π → S2 returns a direction,
whose velocity 𝜕𝜋𝑃 must be carefully chosen such that the parameterization can accom-
plish its goal of freezing discontinuities in place. The equations above are easily satised
if 𝑅 is dened as3

𝑅(𝝎, 𝜋) = 𝝎 + 𝑃 (𝝎, 𝜋) − 𝑃 (𝝎, 𝜋0). (4.22)

However, a suitable function 𝑃 must still be chosen, following two critical requirements:

1. As 𝝎 approaches another direction 𝝎𝑏 (𝜋) that is located on a 𝜋-dependent dis-
continuity, the velocity 𝜕𝜋𝑃 (𝝎, 𝜋) must tend to 𝜕𝜋𝝎𝑏 (𝜋).

2. 𝑃 and its derivative 𝜕𝜋𝑃 must themselves be smooth functions, i.e. they should not
introduce any new discontinuities that would again cause problems when dier-
entiating.

The rst condition is fullled with a preliminary function 𝑃 (𝝎, 𝜋). Its primal evalu-
ation is again not particularly interesting and simply returns the unaltered direction
𝑃 (𝝎, 𝜋0) = 𝝎. However, the direction is computed as part of a modied ray tracing
operation that returns a hit point x̃whose 𝜋-derivative captures the motion of the inter-
sected object, see Figure 4.7.

Note that the derivatives of this suggested direction 𝑃 are only continuous on the
interior of intersected shapes (Figure 4.8 (c)) and satisfying the smoothness condition is
more challenging, especially given that we do not have knowledge about the position
of the discontinuities in the integration domain S2. Bangaru et al. therefore dene 𝑃

in terms of a spherical convolution of the base direction 𝑃 and a weighting kernel 𝑤
requiring normalization through an additional integral in the denominator:

𝑃 (𝝎, 𝜋) =

∫
S2 𝑤 (𝝎,𝝎′) 𝑃 (𝝎′, 𝜋) dΩ(𝝎′)∫

S2 𝑤 (𝝎,𝝎′) dΩ(𝝎′)
. (4.23)

The choice of the weights 𝑤 is crucial here. For instance, a simple Gaussian kernel
ensures smoothness, but the derivatives would no longer match the boundary motion
3Note that some operations involving the parameterization (like Equation (4.22) or evaluating Jaco-
bian determinants) implicitly assume that the underlying spherical domain is accessed using suitable
2-dimensional coordinates (e.g. spherical coordinates), as the ambient 3D space is too high-dimensional.
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Figure 4.7: A specialized ray tracing routine r̃ returns a hit point x̃whose derivative follows the movement

of the intersected shape due to infinitesimal changes of 𝜋 . For the case of a common ray-triangle inter-

section, this involves recomputing the position based on barycentric interpolation of the 𝜋-dependent

vertices v𝑖 (𝜋), but where the barycentric coordinates are used as non-dierentiated constants. 𝑃 is then

the normalized direction computed between x̃ and the ray origin o.

(Figure 4.8 (d)). Bangaru et al. propose a new harmonic convolution weight

𝑤 (𝝎,𝝎′) = 1
�̃�(𝝎′) + 𝑒𝜅 (1−𝝎·𝝎 ′) − 1

(4.24)

involving a spherical vonMises-Fisher distance termwith concentration𝜅 and a boundary
test �̃� that queries approximate distances to the visible edges. Specically, �̃�(𝝎) needs to
approach zero as 𝝎 moves towards a discontinuity 𝝎𝑏 . This can, e.g., be accomplished
based on a dot product with the shading normal or the distance to triangle edges for at
shaded geometry [73].

The resulting weights become extremely large as 𝝎 and 𝝎′ approach a silhouette.
This furthermore occurs in a “unidirectional” fashion to ensure that the nal result
𝑃 (𝝎, 𝜋) follows the motion of the occluder as 𝝎→𝝎𝑏 .

Both integrals in Equation (4.23), are evaluated using Monte Carlo sampling and
must use the same set of random samples to reduce variance to an acceptable level.
Bangaru et al. also employ antithetic sampling (Section 2.4.5) and a control variate ap-
proach (Section 2.4.6) to reduce variance further. Note that the division by an estimate
here generally produces a consistent, but biased estimator. Bangaru et al. also describe
a de-biasing scheme based on Russian Roulette.

A summary of this harmonic convolution procedure is illustrated in Figure 4.8 in a
simplied 2D setting. We refer to the original paper [73] for further details.
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(a) 2D scene overview

(b) Boundary test

(d) Naïve convolution

(c) Directional derivative

(e) Harmonic convolution

Figure 4.8: (a) The red circle in a 2D scene translates due to parameter 𝜋 , causing a discontinuity 𝜃𝑏 (𝜋).
Subsequent plots show functions over the 2D angle 𝜃 of the camera’s field of view. (b) The boundary test
approaches zero at silhouees of intersected geometry. (c)Direction 𝑃 captures the directional motion of

rays hiing the geometry, but is discontinuous across silhouees. (d) Naïve convolution with a Gaussian

weight produces a smooth result but does notmatch the silhouee velocity. (e) The harmonic convolution

satisfies both properties. Note that the discontinuity 𝜃𝑠 caused by the blue sphere is unproblematic as it

remains static with respect to 𝜋 .
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Primal estimator

Primal estimators & MIS

Attached estimator, Eq. (4.31)

Attached estimators &
MIS, Eq. (4.37)

Detached estimators &
attached MIS, Eq. (4.40)

Detached estimator, Eq. (4.29)

Detached estimators & MIS, Eq. (4.35)

MIS

MC

MC

MC

MC MC

MIS

Figure 4.9: A taxonomy of dierential estimators. We illustrate key operations that can be applied to a

primal integral (top le). These includeMonte Carlo importance sampling, multiple importance sampling,

and dierentiation. Non-commutativity of these operations leads to a plethora of dierential estimators

that we study in this chapter. We omit the explicit dependence of 𝑓 and 𝑝 on 𝜋 for brevity. Equation

numbers refer to the corresponding locations in the text.

4.2 Dierential estimators

In this section, we build on top of the previous summary of Monte Carlo methods in
Section 2.4 and investigate the case of dierentiated integrals. We introduce several
estimators illustrated by the taxonomy in Figure 4.9. We analyze their properties and
correctness, assuming for now that the underlying integrals are free of discontinuities.
Section 4.4 will revisit the discontinuous case and discuss interactions that arise due to
the choices made here.
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4.2.1 Detached sampling strategies

We begin with the most basic case that we refer to as the detached strategy for reasons
that will become clear shortly when we contrast it to attached strategies. This approach
corresponds to how one would ordinarily dierentiate an integral with pencil and paper,
i.e., without focusing on its eventual numerical evaluation. We simply move the partial
derivative inside and dierentiate under the integral sign:

𝜕𝜋 𝐼 = 𝜕𝜋

[∫
X
𝑓 (x, 𝜋) d𝜇 (x)

]
=

∫
X
𝜕𝜋 𝑓 (x, 𝜋) d𝜇 (x). (4.25)

This transformation is legal if the integral is free of discontinuities. It also holds when
any present discontinuities are static, i.e., independent of the parameter 𝜋 being dier-
entiated.

Importance sampling. As transport integrals in computer graphics are almost exclu-
sively evaluated using Monte Carlo estimators based on importance sampling, we must
therefore understand how this interacts with dierentiation. We focus on the inverse
transform sampling previously discussed in Section 2.4.3. This involves a dieomor-
phism 𝑇 : U → X that parameterizes the target domain X by the unit-hypercube of
matching dimension. The mapping x = 𝑇 (u) is constructed from a target density 𝑝 (x)
so that its Jacobian determinant satises |𝐽𝑇 (u) | = 𝑝 (x)−1. The reparameterized primal
integral then takes the form

𝐼 =

∫
U
𝑓 (𝑇 (u)) |𝐽𝑇 (u) | d𝜇 (u) =

∫
U

𝑓 (𝑇 (u))
𝑝 (𝑇 (u)) d𝜇 (u). (4.26)

If 𝑝 (x) is roughly proportional to 𝑓 (x), the new integrand is nearly constant, in which
case its estimates are characterized by low variance. The integral can also be turned into
a Monte Carlo estimator by sampling points u uniformly at random inU, and dropping
the integral.

With this notation established, let us now return to dierential estimators. The
change of variables in Equation (4.26) can be straightforwardly applied to a dierential
integral

∫
X 𝜕𝜋 𝑓 (x) d𝜇 (x):

𝜕𝜋 𝐼 =

∫
U

𝜕𝜋 𝑓 (𝑇 (u))
𝑝 (𝑇 (u)) d𝜇 (u). (4.27)

In the case of rendering, the integrand 𝑓 depends on the scene parameter 𝜋 ∈ Π, and in
primal estimators the density 𝑝 and sampling technique 𝑇 will generally also share this
dependence to enable ecient scene-adaptive importance sampling. In the dierential
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Integrands Sampling weights

Figure 4.10: 1D examples of detached samplers. Top le: 𝑓 (green) follows a wrapped normal distribution

parameterized by standard deviation 𝜋 = 𝜎 . Its derivative 𝜕𝜋 𝑓 (blue) has a markedly dierent shape.

Top right: The sampling density 𝑝 = 𝑓 yields a zero-variance primal estimator 𝑓/𝑝 = 1 (green), while

the detached estimator of the derivative 𝜕𝜋 𝑓/𝑝 (blue) produces large sample weights. Boom row: The

same experiment with a dierent value of 𝜋 . The problem is less pronounced as 𝜕𝜋 𝑓 and 𝑝 become more

uniform.

setting, priorwork [156] has handled this dependence by introducing another conceptual
parameter variable 𝜋0, whose value happens to match 𝜋 , but is not part of the dieren-
tiation. In this case, both the transform and density can depend on 𝜋0 to benet from
specialized primal sampling strategies:

𝜕𝜋 𝐼 =

∫
U

𝜕𝜋 𝑓 (𝑇 (u, 𝜋0), 𝜋)
𝑝 (𝑇 (u, 𝜋0), 𝜋0)

d𝜇 (u). (4.28)

This nally gives us the expression of the detached estimator

〈𝜕𝜋 𝐼 〉 (detach) =
𝜕𝜋 𝑓 (x, 𝜋)
𝑝 (x, 𝜋0)

, with x = 𝑇 (u, 𝜋0). (4.29)

While not considering part of the expression during dierentiation may intuitively ap-
pear incorrect, Equation (4.29) remains a valid estimator as long as the primal strategy
samples all positions where 𝜕𝜋 𝑓 ≠ 0 with nonzero probability. This requirement may be
violated in practice and requires special precautions in dierential rendering algorithms,
e.g., by ensuring a minimum density even in zero-valued regions of the integrand. An
example where this would be necessary is a spatially varying emitter with zero-valued
regions that can potentially be “turned on” by the optimization process.

132



Chapter 4. Dierential Monte Carlo Estimators

It is important to realize that a high-quality primal sampling strategy with 𝑝 ≈ 𝑓 is
not necessarily also a good choice for the dierential estimator of 𝜕𝜋 𝑓 , as illustrated in
Figure 4.10. As with standard (i.e., non-dierential) Monte Carlo estimators, the eec-
tiveness of a strategy depends on how well its sampling density 𝑝 matches the integrand
𝜕𝜋 𝑓 . Additionally, there is a potential for high variance due to sign related changes in
the estimate because 𝜕𝜋 𝑓 also contains negative regions.

Detached sampling strategies also cannot be used when the integrand contains a
Dirac delta function, which collapses the integration domain.

4.2.2 Aached sampling strategies

Many widely used sampling strategies depend on scene parameters. Examples from the
context of physically based rendering include:

1. Sampling of directionally peaked distributions like microfacet models that depend
on a roughness parameter.

2. Directional sampling of environment maps proportionally to their textured inten-
sity.

3. Any BSDF sampling method that has an implicit dependence on the local frame
which is computed from the shading normals (and ultimately, the surface posi-
tions).

In this case, the generated samples conceptually move when we perturb the associated
scene parameter 𝜋 . The previously discussed strategy discarded these eects and was
thus detached from this motion, motivating its name. We now turn to attached strategies
that do account for the additional dependence. With this change, everything including
the function 𝑓 , the transformation 𝑇 , and the division by the probability 𝑝 are jointly
dierentiated

𝜕𝜋 𝐼 =

∫
U
𝜕𝜋

[
𝑓 (𝑇 (u, 𝜋), 𝜋)
𝑝 (𝑇 (u, 𝜋), 𝜋)

]
d𝜇 (u), (4.30)

which leads to the attached estimator

〈𝜕𝜋 𝐼 〉 (attach) = 𝜕𝜋

[
𝑓 (𝑇 (u, 𝜋), 𝜋)
𝑝 (𝑇 (u, 𝜋), 𝜋)

]
. (4.31)

Consequently, attached sampling is also possible across more than one scattering
event. In that case, the integration domainU and its counterpart X simply have higher
dimension.
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It is interesting to note that the attached strategy will usually be produced by default
when Monte Carlo sampling code is transparently dierentiated using techniques for
automatic dierentiation.

Let us briey consider the setting where dimU = dimX = 1 to better understand
Equation (4.30). Applying the above derivatives then yields

𝜕𝜋 𝐼 =

∫
U

1
𝑝 (𝑥, 𝜋)2 ·

[
𝑝 (𝑥, 𝜋) (𝜕𝜋 𝑓 (𝑥, 𝜋) + 𝜕𝜋𝑇 (𝑢, 𝜋) 𝜕𝑥 𝑓 (𝑥, 𝜋))

− 𝑓 (𝑥, 𝜋) (𝜕𝜋𝑝 (𝑥, 𝜋) + 𝜕𝜋𝑇 (𝑢, 𝜋) 𝜕𝑥𝑝 (𝑥, 𝜋))
]
d𝑢. (4.32)

where 𝑇 (𝑢, 𝜋) has been replaced by 𝑥 for readability. What can we learn from this ex-
pression? When 𝑓 and 𝑝 are roughly proportional, then so are their derivatives 𝜕𝑥 𝑓 , 𝜕𝜋 𝑓 ,
𝜕𝑥𝑝 , and 𝜕𝜋𝑝 . In this case, symmetries in the expression within square brackets cause it
to be close to zero, which means that the dierentiated sampling technique remains a
good choice for the dierential estimator.

Attached sampling naturally handles integrands containing delta functions, which
are not supported by most previous work on dierentiable rendering. This case arises,
e.g., when computing gradients with respect to the surface normal of a mirror. In this
situation, the product of (delta) BSDF and incident radiance simplies to just the radi-
ance term that will then be evaluated through the mapping 𝑇 . This addresses a severe
limitation of detached sampling techniques.

While that is all excellent news, there are also multiple potential pitfalls involving
this type of estimator.

Product integrals. Things becomes more complicated when the integrand is actually
a product of complex terms 𝑓 = 𝑔 · ℎ, of which only one is targeted by the sampling
strategy. Suppose that the sampling density 𝑝 is perfectly proportional to the rst term,
i.e., 𝑝 = 𝐶 · 𝑔 for 𝐶 ∈ R. Then the attached dierential estimator reduces to

𝜕𝜋 𝐼 = 𝐶−1
∫
U

[
𝜕𝜋ℎ(𝑥, 𝜋) + 𝜕𝜋𝑇 (𝑢, 𝜋) 𝜕𝑥ℎ(𝑥, 𝜋)

]
d𝑢. (4.33)

This expression indicates that two properties carry over from the primal case: 𝑔 is han-
dled perfectly in the sense that no variance will arise from this term, and integration of
the second term ℎ proceeds through the parameterization 𝑇 (𝑢, 𝜋).

In contrast to the primal case, an additional term captures the dierential change of
the reparameterized function ℎ(𝑇 (..)) . It has the potential to introduce signicant vari-
ance when the parameterization 𝑇 rapidly distorts ℎ for small perturbations of 𝜋 . This
additional complication does not exist in the primal case. It would be tempting to mix
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Figure 4.11: 1D Examples of aached samplers. Top row: 𝑔 (green) follows a normal distribution parame-

terized by standard deviation 𝜋 = 𝜎 and is sampled with density 𝑝 (black) approximating 𝑔. Variance due

to aached sampleweights (red) inU resembles the primal case (green), while a detached estimator (blue)

performs substantially worse. Boom row: Product integral of two scaled Gaussians 𝑔 = ℎ sampled pro-

portionally (𝑝 ∼ 𝑔), where ℎ is independent of 𝜋 . Extra derivative terms involving the non-sampled factor

in Equation (4.33) inject additional variance, causing the aached estimator (red) to perform poorly com-

pared to an estimator of the primal product integral (green).

and match, i.e., to attach the factor being sampled and detach the other term to avoid
this additional source of variance. However, this generally introduces bias4. Figure 4.11
illustrates the dierence between complete sampling of an integral and partial sampling
based on a factor.

Unfortunately, almost all integrals we want to solve in rendering are product in-
tegrals, e.g., the measurement (2.47) or rendering (2.50) equations. As a consequence,
the eectiveness of attached strategies is often suboptimal. Let us also look at this
for an actual example from a rendering context. We consider the product integral be-
tween a glossy microfacet BSDF 𝑓𝑠 and the incident radiance 𝐿i dened as an environ-
ment map texture. We assume that we can perfectly importance sample the BSDF term
(𝑝 (𝝎, 𝜋) = 𝐶 · 𝑓𝑠 (𝝎, 𝜋)) and want to estimate the derivative of the integral after dier-

4A product integral 𝜕𝜋
[∫ 1

0 𝑔(𝑥, 𝜋) · ℎ(𝑥, 𝜋) d𝑥
]
with 𝑔(𝑥, 𝜋) = ℎ(𝑥, 𝜋) = 𝑥𝜋 and 𝑝 (𝑥, 𝜋) ∼ 𝑥𝜋 provides a

simple example of this: all possible ways of attaching and detaching the terms and reciprocal probability
lead to dierent derivative estimates for 𝜋0 = 1.
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entiating the BSDF roughness parameter:

BSDF and probability density factors thus cancel out when we rewrite this as an integral
over random numbersU that are used in the associated sampling routine 𝑇 (u, 𝜋):

Taking the derivative following the vector-valued version of Equation (4.33) introduces
a dot product between the 𝜋-derivative of the sampled direction 𝑇 , and a directional
𝝎-derivative of the incident radiance5:

5For the illustration, we parameterize the directions𝝎 using 2D spherical coordinates (𝜃, 𝜙). It is also valid
to work in a 3D coordinate system with normalized vectors 𝝎.
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Note that an additional 𝜕𝜋𝐿i(𝝎) term is omitted in the illustration as it evaluates to zero,
i.e., the incident radiance is independent of 𝜋 when not warped through 𝑇 (u, 𝜋).

As in the 1D example (4.33) earlier, dierentiating through the full sampling routine
adds considerable complexity to the problem that was not present in the primal integral.
The corresponding (attached) Monte Carlo estimator will now place samples randomly
inU to estimate the derivative, causing high variance.

Discrete decisions. Sampling techniques often consume uniform variates to take dis-
crete decisions like choosing the component of a multi-lobe BSDF. In contrast to the
unied dierentiation of integrand, density, and parameterization in Equation (4.30),
the probabilities of such discrete decisions should never be handled in an attached man-
ner, as doing so would introduce severe bias. For example, consider a path termination
criterion such as Russian Roulette (Section 2.5.2), which only continues a random walk
with probability 𝑃𝑅 , while applying a scaling correction to account for this change:

RR(𝑢, 𝑃𝑅) =

1/𝑃𝑅, 𝑢 < 𝑃𝑅,

0, otherwise.

In practice, the probability 𝑃𝑅 would be related to the reectances of prior scattering in-
teraction, which introduces a dependence on the scene parameters (in the extreme case,
𝑃𝑅 = 𝜋 ). However, this expression then behaves like a parameter-dependent discontinu-
ity that was explicitly forbidden at the beginning of this section. Computations of such
probabilities can still depend on scene parameters, but to resolve the issue they should
use only its value 𝜋0 without being part of the dierentiation process.

Creation of discontinuities. Techniques of the detached type can be used to compute
unbiased estimates of discontinuous integrands if the positions of these discontinuities
do not depend on scene parameters 𝜋 . This common case arises, e.g., when optimiz-
ing materials on static geometry. The ability to easily solve such problems despite the
omnipresent visibility-induced discontinuities is a welcome simplication.

The previous discussion has shown that attached sampling strategies can be supe-
rior to detached ones, particularly when the former are built from high-quality primal
methods. However, attempting to dierentiate discontinuous integrands using such at-
tached strategies reveals a fundamental problem: these methods warp the integrand in a
parameter-dependent fashion, and this transformation will naturally also aect discon-
tinuities. Consequently, as shown in Figure 4.12, discontinuities that were previously
static on X will lose this property on the reparameterized domainU, introducing bias.
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Figure 4.12: The visible hemisphere from a given reference point in a Cornell box scene (a) is mapped

through a microfacet importance sampling transform onto the unit squareU for two dierent roughness

values 𝛼 = 0.4 (b) and 𝛼 = 0.6 (c). Motion vectors (white arrows) indicate how static discontinuities (red

and blue lines) become dependent on 𝛼 through this parameterization. The sampling routine used in this

visualization targets the Beckmann microfacet distribution through a concentric disk mapping.

This can also be interpreted as placing parameter dependent samples inX that will then
cross discontinuity curves when applying innitesimal changes to 𝜋 .

As-is, such attached techniques simply cannot be usedwith discontinuous integrands,
which rules outmost rendering-related applications. Fortunately, it is possible to address
this limitation using reparameterized attached sampling that we present in Section 4.4 for
the important special case of directly visible discontinuities on the unit sphere X = S2.

4.2.3 Multiple importance sampling

Given the essential role of multiple importance sampling for variance reduction in for-
ward rendering, we will now also consider MIS in the context of gradient estimators.
Analogously to the choice of attaching or detaching the estimators themselves, the same
decision must now be taken for their MIS weights, resulting in a 2× 2matrix of possible
combinations.

Themain benet of attached strategies lies in their ability to consider the dependence
on 𝜋 for variance reduction. This is ultimately not very useful for MIS weights, where
a strong dependence on 𝜋 represents an unusual situation: this would mean that a per-
turbation of a scene parameter rapidly changes the sampling technique of choice. While
MIS continues to play an important role in combining several strategies, the choice of
whether to attach or detach its weights is thus largely irrelevant from the viewpoint of
variance reduction. However, not all possible combinations of attached estimators and
attached MIS are useful or even correct, and we now review the various possibilities
from this viewpoint.
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Detached estimators, detachedMIS. Suppose that we are already working with de-
tached estimators: in this case, it would be natural to similarly neglect the 𝜋-dependence
of MIS weights during dierentiation:

𝜕𝜋 𝐼 =

𝑀∑︁
𝑗=1

∫
U
𝑤 𝑗 (𝑇𝑗 (u, 𝜋0), 𝜋0) ·

𝜕𝜋 𝑓 (𝑇𝑗 (u, 𝜋0), 𝜋)
𝑝𝑖 (𝑇𝑗 (u, 𝜋0), 𝜋0)

d𝜇 (u), (4.34)

where 𝑀 techniques with sampling transforms 𝑇𝑗 and PDFs 𝑝 𝑗 are combined. The re-
sulting estimator is

〈𝜕𝜋 𝐼 〉 (MIS d./d.) =
𝑀∑︁
𝑗=1

𝑤 𝑗 (x 𝑗 , 𝜋0) ·
𝜕𝜋 𝑓 (x 𝑗 , 𝜋)
𝑝𝑖 (x 𝑗 , 𝜋0)

, (4.35)

where a sample drawn from strategy 𝑗 is denoted as x 𝑗 = 𝑇𝑗 (u, 𝜋0).
This combination is a standard application of MIS to a particular function that hap-

pens to be a derivative, and its correctness thus follows from prior work, see Equa-
tion (2.98).

Aached estimators, aachedMIS. Alternatively, both estimators andMIS weights
can be parameterized through corresponding inverse-transform mappings 𝑇𝑖 : U → X
to track all parameter dependencies during the dierentiation process. This case is cor-
rect by denition as we are now simply looking at the derivative of the entire expression:

𝜕𝜋 𝐼 =

𝑀∑︁
𝑗=1

∫
U
𝜕𝜋

[
𝑤 𝑗 (𝑇𝑗 (u, 𝜋), 𝜋) ·

𝑓 (𝑇𝑗 (u, 𝜋), 𝜋)
𝑝 𝑗 (𝑇𝑗 (u, 𝜋), 𝜋)

]
d𝜇 (u), (4.36)

with nal estimator

〈𝜕𝜋 𝐼 〉 (MIS a./a.) =
𝑀∑︁
𝑗=1

𝜕𝜋

[
𝑤 𝑗 (𝑇𝑗 (u, 𝜋), 𝜋) ·

𝑓 (𝑇𝑗 (u, 𝜋), 𝜋)
𝑝 𝑗 (𝑇𝑗 (u, 𝜋), 𝜋)

]
. (4.37)

Aached estimators, detachedMIS. In our experiments, we also considered a third
logical option of combining attached estimators with detached MIS weights:

𝜕𝜋 𝐼
?
=

𝑀∑︁
𝑗=1

∫
U
𝑤 𝑗 (𝑇𝑗 (u, 𝜋0), 𝜋0) · 𝜕𝜋

[
𝑓 (𝑇𝑗 (u, 𝜋), 𝜋)
𝑝 𝑗 (𝑇𝑗 (u, 𝜋), 𝜋)

]
d𝜇 (u). (4.38)

However, this combination can be severely biased. Dierentiation of the fully attached
case in Equation (4.36) via the product rule generatesmixed terms of the form (𝜕𝜋𝑤 𝑗 ) · 𝑓/𝑝 𝑗

that are missing in Equation (4.38), and this introduces bias unless 𝜕𝜋𝑤 𝑗 = 0 (which does
not represent an interesting case).
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Detached estimators, aachedMIS. Finally, one can also attach the MIS weights of
a set of detached estimators:

𝜕𝜋 𝐼 =

𝑀∑︁
𝑗=1

∫
U

𝜕𝜋
[
𝑤 𝑗 (𝑇𝑗 (u, 𝜋0), 𝜋) · 𝑓 (𝑇𝑗 (u, 𝜋0), 𝜋)

]
𝑝 𝑗 (𝑇𝑗 (u, 𝜋0), 𝜋0)

d𝜇 (u), (4.39)

leading to one more estimator

〈𝜕𝜋 𝐼 〉 (MIS d./a.) =
𝑀∑︁
𝑗=1

𝜕𝜋
[
𝑤 𝑗 (x 𝑗 , 𝜋) · 𝑓 (x 𝑗 , 𝜋)

]
𝑝 𝑗 (x 𝑗 , 𝜋0)

. (4.40)

The validity of this approach follows from the correctness of the individual steps that
can be used to derive it: introducing MIS, dierentiating, followed by Monte Carlo im-
portance sampling. See also the sequence of steps leading to the bottom right in the
taxonomy in Figure 4.9. We mainly mention this case for completeness and have not
found it to be a compelling strategy in our experiments using standard MIS weights
based on the balance or power heuristic.

Combining aached and detached strategies. The full set of options is even more
ne-grained than the above list may suggest: mixing attached and detached estimators is
also possible. The validity of this approach oncemore follows from the correctness of the
individual steps, as highlighted in Figure 4.13. In some sense, this is not too surprising,
as this type of combination will naturally arise if one of the strategies 𝑝 𝑗 is independent
of the parameter 𝜋 being dierentiated.

Discussion. To summarize, MIS remains a helpful tool for combining sampling strate-
gies. Not all possible combinations of attached MIS weights and estimators are useful or
yield unbiased gradient estimates. Based on experimental evaluation, we recommend to
either jointly attach or detach estimators and their MIS weights.

A curious thought that arises following this discussion is whether one can combine
attached and detached versions of the same primal estimator via MIS to draw on each
strategy where it performs best? This intuition from primal estimators sadly does not
transfer to the dierential world: standard MIS weights are guided by sampling proba-
bilities, and those probabilities would be identical in such a combination (modulo minor
dierences in how dierentiation is performed with respect to 𝜋 ). It will be interesting
to explore extensions and generalizations of MIS that can perceive the deciencies of a
dierential estimator and suitably adapt.

140



Chapter 4. Dierential Monte Carlo Estimators

MIS between detached and attached estimators

MC

MC

MIS

Figure 4.13: The decision of whether to aach or detach a sampling technique and its MIS weight can

be made separately for each technique, as illustrated by this derivation sketch where the arrows on both

sides refer to the le and right summands respectively.

Note that the variance guarantees normally associated with MIS [66, 67] also no
longer hold in the dierential setting. Similar to normal importance sampling, the pres-
ence of negative integrand regions severely changes the underlying estimation problem,
and it is unclear how MIS is aected when the weights themselves undergo dierentia-
tion. Investigating new variance bounds for this generalized casewould provide valuable
additional insight for the estimators discussed in this section.
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Figure 4.14: 1D examples of custom dierential strategies. Top row: The wrapped normal distribution 𝑝

is ill-suited for sampling its derivative 𝜕𝜋 𝑓 = 𝜕𝜋𝑝 and produces large weights. Boom row: the densities

𝑝+ and 𝑝− are proportional to the positive and negative regions of 𝜕𝜋 𝑓 and produce constant sample

weights that reduce the variance of the estimator.

4.3 Dierential sampling strategies

Section 4.1.2 hinted at a fascinating possibility that arises when a dierentiable renderer
relies on decoupled primal and adjoint phases as part of radiative backpropagation: we
can introduce additional strategies that are specically designed to improve sampling of
dierential transport. From a high level, such a dierential sampling strategy will involve
an integral that looks identical to the detached case from Equation (4.28):

𝜕𝜋 𝐼 =

∫
U

𝜕𝜋 𝑓 (𝑇 (u, 𝜋0), 𝜋)
𝑝 (𝑇 (u, 𝜋0), 𝜋0)

d𝜇 (u). (4.41)

The key dierence is that the sampling technique encoded in 𝑝 and 𝑇 is no longer con-
strained by the primal phase. Essentially anything could be used, and we can exploit
this freedom to reduce variance in challenging situations. Figure 4.14 shows a simple 1D
example of a dierential sampling strategy tailored to a wrapped normal distribution.

Dierential sampling strategies also address an issue that we had rst observed in
Equation (4.33), which appears when attached sampling techniques are invariably ap-
plied to product integrals that occur in rendering algorithms. Attached strategies will
warp all factors, and this introduces additional derivative terms that can introduce sig-
nicant variance. In contrast, the formulation in Equation (4.41) is static and does not

142



Chapter 4. Dierential Monte Carlo Estimators

suer from this problem.
Not all scene parameters call for custom sampling strategies, however. Many ma-

terial models include a directionally uniform albedo that is adequately handled by pri-
mal strategies. In contrast, scene parameters controlling surface roughness have a pro-
nounced eect on the sampling process and constitute an example where dierential
strategies can make a large dierence. This is apparent in many of the results we show
later in Section 4.5, where the dierential strategy generally performs best. We now
discuss an example of a sampling technique targeting the family of microfacet BRDFs.

4.3.1 Dierential microfacet sampling

As discussed previously in Section 2.2.5, microfacet distributions are integral building
blocks of many widely used reectance models. In numerical experiments, we found
that derivatives with respect to their roughness parameter were characterized by severe
variance. Figure 4.10 highlights the fundamental problem: changes in the shape of the
integrand break detached estimators. On the other hand, attached estimators applied
to a product integral with material and lighting terms tend to perform poorly when
the parameter-dependent warp distorts the incident radiance function. We leverage the
freedom of a decoupled dierential transport simulation to introduce a specialized dif-
ferential sampling strategy that will address these challenges.

Recall the expression of an (isotropic) microfacet BRDF from Section 2.2.5:

𝑓𝑟 (x,𝝎i→𝝎o, 𝛼) =
𝐹 (𝝎i,𝝎h) 𝐷 (𝝎h)𝐺 (𝝎i,𝝎o,𝝎h, 𝛼)

4 |cos𝜃 i | · |cos𝜃o |
, (4.42)

where the roughness parameter 𝛼 is included as an explicit argument this time. Like
discussed previously, 𝐹 refers to the Fresnel term (which does not depend on 𝛼), 𝐷 is
the microfacet distribution,𝐺 is the shadowing-masking term, and 𝝎h denotes the half-
direction vector between 𝝎i and 𝝎o. Its derivative with respect to 𝛼 is

𝜕𝛼 𝑓𝑟 (x,𝝎i→𝝎o, 𝛼) =
𝐹 (𝝎i,𝝎h)

4 |cos𝜃 i | · |cos𝜃o |
𝜕𝛼 [𝐷 (𝝎h, 𝛼)𝐺 (𝝎i,𝝎o,𝝎h, 𝛼)] . (4.43)

Here, we ignore the derivative in 𝐺 as it only has a minor eect on the directional dis-
tribution and focus on the microfacet distribution 𝐷 , limiting our discussion to the two
isotropic Beckmann [27] and GGX [31, 32] models. In spherical coordinates, these two
distributions are dened as

𝐷GGX(𝜃, 𝛼) cos𝜃 =
2𝛼2 sin𝜃

cos3 𝜃 (𝛼2 + tan2 𝜃 )2 , (4.44)

𝐷Beck.(𝜃, 𝛼) cos𝜃 =
2𝑒
− tan2 𝜃

𝛼2 sin𝜃
𝛼2 cos3 𝜃

, (4.45)
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Beckmann GGX

Figure 4.15: Plots of twomicrofacet distributions (Beckmann andGGX)with roughness parameter𝛼 = 0.5
(black). The derivative with respect to 𝛼 produces a signed function with positive and negative lobes of

equal mass. Our dierential microfacet sampling strategy specifically samples these two lobes using two

densities 𝑝+ and 𝑝− (green and red) that are proportional to the absolute value of these derivatives. This

enables eicient computation of gradients that characterize how the transport simulation changes with

respect to perturbations of 𝛼 .

where the cosine term on the left side is required for normalization. Following dieren-
tiation, the function splits into a positive and negative lobe of equal area (Figure 4.15)
with a zero crossing at 𝜃0 = arctan(𝛼). Our goal is to construct a method that samples
proportionally to the absolute value of their derivatives

𝜕𝛼 [𝐷GGX(𝜃, 𝛼) · cos𝜃 ] =
4𝛼 tan𝜃 (tan2 𝜃 − 𝛼2)
cos2 𝜃 (𝛼2 + tan2 𝜃 )3 , (4.46)

𝜕𝛼 [𝐷Beck.(𝜃, 𝛼) · cos𝜃 ] =
4𝑒−

tan2 𝜃
𝛼2 tan𝜃 (tan2 𝜃 − 𝛼2)

𝛼5 cos2 𝜃
. (4.47)

Details about the necessary inverse transformmapping can be found in Appendix B. Fig-
ure 4.16 contrasts samples drawn from primal and dierential microfacet distributions.

Signed integrands and antithetics. As discussed many times already, e.g. in Sec-
tion 2.4.3, Monte Carlo importance sampling produces zero variance when the sampling
density is perfectly proportional to a non-negative integrand. Unfortunately, this prop-
erty no longer holds for signed integrands—in the worst case, sign-related variance can
fully negate the benets of tailored importance sampling strategies even if they match
the integrand in an absolute sense. Multiple techniques exist to handle such cases [57].
We rely on antithetic sampling (Section 2.4.5) where we generate paired and correlated
samples from the two lobes. We accomplish this by performing two separate rendering
passes using the same random number generator state that are nally averaged.
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GGXBeckmann

Figure 4.16: Visualization of samples produced by the Beckmann andGGX (top) and dBeckmann and dGGX

(boom) sampling techniques for 𝛼 = 1/2. Positive and negative lobes are highlighted in green and red.

Our use of antithetics in the context of dierentiable rendering is inspired by Ban-
garu et al. [73] and also the previous cross weighting scheme by Loubet et al. [156]. An-
tithetic sampling was concurrently investigated by Zhang et al. [74] who also noticed
high variance derivative estimates in the presence of highly specular materials. How-
ever, compared to our approach that targets roughness derivatives, Zhang et al. instead
consider derivatives due to changes in geometric parameters.

Other considerations. One limitation of dierential BSDF sampling strategies is that
they require an incident illumination estimate for the newly sampled direction, which
must be computed using recursive path tracing or an alternative primal algorithm. Reg-
ular BSDF sampling remains necessary to scatter the adjoint radiance to other parts of
the scene, which propagates like normal light6. These branching random walks cause
the method to have a quadratic time complexity as a function of path length, which is
6For clarication, we refer to the derivation of radiative backpropagation in Section 4.1.2. In particular,
indirect propagation occurs via term (T3), and dierential strategies target term (T2) of the dierentiated
rendering equation (4.11).
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also a limitation of the original RB algorithm.
When the dierentiation problem involves parameters beyond surface roughness,

the dierential transport simulation must also incorporate detached BSDF sampling to
obtain low-variance estimates of the associated derivatives. The two strategies are then
combined via detached MIS. Things become more complicated however in case multi-
ple dierential strategies are available: compared to forward rendering, where a single
integral is computed to determine the intensity of a pixel, an adjoint rendering pass es-
timates a potentially large number of derivative integrals simultaneously, i.e. one per
dierentiated scene parameter. This means we face two conicting goals. Ideally, light
paths are sampled based on dierential strategies that target specic parameters. But
for computational eciency of the adjoint simulation we want the sampling techniques
to be shared across all parameters. It is currently unclear how these two factors should
be best consolidated.

Combinations of dierential and detached/attached strategies via MIS are also pos-
sible: we combine the dierential microfacet sampling technique with standard emitter
sampling for some of our tests.

The described technique is not specic to the reective case and also enables dier-
ential sampling of rough transmission. We did not investigate generalizations to more
advanced models with anisotropy or vNDF sampling [79] and consider them possible
future work.

Wemention for completeness that dierential strategies could also be attached, which
would entail tracking derivatives of𝑇 and 𝑝 with respect to 𝜋 in Equation (4.41). Attach-
ing was of crucial importance when we were restricted to working with primal sampling
techniques, but it is of limited use here as 𝑇 and 𝑝 can be arbitrarily chosen. Detached
strategies can also directly handle integrands with static discontinuities, for instance
when optimizing the materials of a scene with xed geometry. No special handling of
moving discontinuities (Section 4.4) is required in that case, which is benecial as this
comes at considerable additional runtime cost.
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4.4 Reparameterizing discontinuous integrands

We nally return to the case of integrands containing discontinuities, whose position
furthermore depends on 𝜋 . To do so, we adopt the high-level framework of Loubet et
al. [156] and transform the integrals using the recently proposed parameterization by
Bangaru et al. [73]. This counteracts the motion of discontinuities, so that the tools from
Section 4.2 are readily applicable.

However, both prior methods by Loubet et al. and Bangaru et al. are designed to
work in a context where the primal and dierential phases are rigidly coupled via re-
verse mode dierentiation. This means that these methods suer from severe overheads
to store primal program variables that are later needed for dierentiation. In contrast,
our work operates within the decoupled RB framework [155], which turns the dieren-
tiation into an independent simulation that transports derivative radiation from sensors
to dierentiable objects.

The goal of this section is to clarify how reparameterization-based techniques can
be cast into a suitable form to enable their use within such a dierential transport sim-
ulation. We will also revisit the case of attached samplers to nally address a severe
limitation with discontinuities encountered in Section 4.2.2.

4.4.1 Reparameterized radiative backpropagation

Recall the original derivation of RB from Section 4.1.2. It begins with the dierential
forms of the three equations that jointly dene the problem solved by any rendering
algorithm: scattering, transport, and measurement. Let us rst cover the representative
case of scattering, i.e. the rendering equation (2.50), to describe the needed changes.
When reparameterized using 𝑅, its primal form reads

𝐿o(x,𝝎o) = 𝐿e(x,𝝎o)

+
∫
S2

𝑓𝑠 (x, 𝑅(𝝎i, 𝜋)→𝝎o) 𝐿i(x, 𝑅(𝝎i, 𝜋)) |𝐽𝑅 (𝝎i, 𝜋) | dΩ⊥x (𝝎i). (4.48)

Since the discontinuities are now static, it is legal to dierentiate under the integral sign.
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Application of the product rule then produces a total of four derivative terms:

𝜕𝜋𝐿o(x,𝝎o) = 𝜕𝜋𝐿e(x,𝝎o)

+
∫
S2

𝜕𝜋 𝑓𝑠 (x, 𝑅(𝝎i, 𝜋)→𝝎o) 𝐿i(x, 𝑅(𝝎i, 𝜋)) |𝐽𝑅 (𝝎i, 𝜋) | dΩ⊥x (𝝎i)

+
∫
S2

𝑓𝑠 (x, 𝑅(𝝎i, 𝜋)→𝝎o) 𝜕𝜋𝐿i(x, 𝑅(𝝎i, 𝜋)) |𝐽𝑅 (𝝎i, 𝜋) | dΩ⊥x (𝝎i)

+
∫
S2

𝑓𝑠 (x, 𝑅(𝝎i, 𝜋)→𝝎o) 𝐿i(x, 𝑅(𝝎i, 𝜋)) 𝜕𝜋 |𝐽𝑅 (𝝎i, 𝜋) | dΩ⊥x (𝝎i). (4.49)

These expressions simplify considerably however by noting that 𝑅 and its Jacobian re-
duce to the identity when they occur in a term that is not dierentiated:

𝜕𝜋𝐿o(x,𝝎o) = 𝜕𝜋𝐿e(x,𝝎o) (T1)

+
∫
S2

𝜕𝜋 𝑓𝑠 (x, 𝑅(𝝎i, 𝜋)→𝝎o) 𝐿i(x,𝝎i) dΩ⊥x (𝝎i) (T2)

+
∫
S2

𝑓𝑠 (x,𝝎i→𝝎o) 𝜕𝜋𝐿i(x, 𝑅(𝝎i, 𝜋)) dΩ⊥x (𝝎i) (T3)

+
∫
S2

𝑓𝑠 (x,𝝎i→𝝎o) 𝐿i(x,𝝎i) 𝜕𝜋 |𝐽𝑅 (𝝎i, 𝜋) | dΩ⊥x (𝝎i) . (T4) (4.50)

Intuitively, this equation states that the process of dierentiation can be modeled by
simulating scattering, transport, and eventual measurement of a hypothetical “dier-
ential radiance” quantied by 𝜕𝜋𝐿i and 𝜕𝜋𝐿o, and there is one such function per scene
parameter 𝜋 .

Equation (4.50) takes the role of an energy balance equation that indicates the fol-
lowing properties:

T1. Dierential radiance is emitted when the primal emission 𝐿e depends on 𝜋 .

T2. Objects, whose material model depends on the parameter 𝜋 , convert some of the
ordinary radiance incident on the surface (𝐿i) into dierential radiance (𝜕𝜋𝐿o).

T3. Once created, dierential radiance scatters like ordinary light (i.e. involving the
non-dierentiated BSDF of scene objects).

T4. Dierential radiance is also added or subtracted when the parameterization 𝑅 ex-
pands or contracts space depending on 𝜋 .

In contrast to RB without reparameterization, (T4) is new and all terms are now at least
partially warped by the parameterization.
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The same steps can also be applied to the measurement equation (2.47), which results
in

𝜕𝝅 𝐼𝑘 =

∫
M

∫
S2

𝜕𝜋𝑊
(𝑘)
e (x, 𝑅(𝝎, 𝜋)) 𝐿i(x,𝝎) dΩ⊥x (𝝎) d𝐴(x)

+
∫
M

∫
S2
𝑊
(𝑘)
e (x,𝝎) 𝜕𝜋𝐿i(x, 𝑅(𝝎, 𝜋)) dΩ⊥x (𝝎) d𝐴(x)

+
∫
M

∫
S2
𝑊
(𝑘)
e (x,𝝎) 𝐿i(x,𝝎) 𝜕𝜋 |𝐽𝑅 (𝝎, 𝜋) | dΩ⊥x (𝝎) d𝐴(x). (4.51)

Bangaru et al. [73] relate the parameterization’s Jacobian determinant to a vector eld
divergence. After reordering terms we get

𝜕𝜋 |𝐽𝑅 (𝝎, 𝜋) | = ∇𝝎 · 𝜕𝜋𝑅 = 𝜕𝜋 (∇𝝎 · 𝑅) . (4.52)

The divergence in parentheses can be cheaply approximated alongside the reparameteri-
zation itself (via the convolution in Equation (4.23)), involving derivatives of the weight-
ing kernel𝑤 . We perform the outer derivative using reverse mode AD, which will then
backpropagate gradients to the scene geometry.

At this point, Equations (4.50) and (4.51) could in principle be solved separately for
each scene parameter 𝜋 to compute dierential radiance arriving at a image pixel, result-
ing in a gradient image. This approach does not scale to scenes with high-dimensional
parameter spaces, as millions of such images would potentially need to be rendered per
gradient descent step.

Analogously to Section 4.1.2, reparameterized RB exploits the reciprocal nature of
this problem and transports derivatives in the opposite direction, i.e., from the camera
towards scene objects. The radiation emanating from the camera in this phase is a signed
quantity (“adjoint radiance”) that species how the rendered image should change to
optimally improve the optimization objective. Only a single transport problem needs
to be solved in this case, which is substantially more ecient than the naïve approach
mentioned above. Once the adjoint radiance reaches a specic surface location, it must
still be converted into a scene parameter gradient. Here, it is useful to observe that a
point is generally only characterized by a few local parameters, such as the positions
of surrounding vertices, texels referenced by a texture lookup in a shader, etc. Whereas
path tracing performs a random walk that reads such local surface properties, RB then
performs an analogous random walk that writes local gradients at every interaction.

Algorithms 4.3 and 4.4 provide the pseudocode of the reparameterized RB method
(relying on detached sampling) and can be contrasted to similar code fragments in Sec-
tion 4.1.2, as well as the original paper [155].
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1 def reparam_rb(𝝅, 𝜹I):
2 # Initialize parameter gradient(s) to zero

3 𝜹𝝅 = 0
4 for _ in range(num_samples):

5 # Sample ray proportional to sensor response and pixel filter

6 (x, 𝝎), s_val, s_pdf = sensor.sample_ray()

7 # Query adjoint emitted radiance associated with current ray

8 A_e = 𝐴e (𝜹I, x,𝝎) / num_samples

9 # Backpropagate through the reparameterized pixel filter

10 𝜹𝝅 += adjoint([[ sensor.eval(x, 𝑅(𝝎, 𝝅)) ]], A_e * 𝐿i (x,𝝎) / s_pdf)

11 # Backpropagate through the divergence

12 𝜹𝝅 += adjoint([[ ∇𝝎 · 𝑅(𝝎, 𝜋) ]], A_e * s_val * 𝐿i (x,𝝎) / s_pdf)

13 # Propagate adjoint radiance into the scene

14 𝜹𝝅 += reparam_rb_Li(𝝅, x, 𝑅(𝝎, 𝝅), A_e * s_val / s_pdf)

15 # Finished, return gradients

16 return 𝜹𝝅

Algorithm 4.3: Reparameterized radiative backpropagation takes scene parameters 𝝅 and an adjoint ren-

dering 𝜹I as input. This pseudocode fragment is responsible for the measurement integral. It samples

a set of sensor rays, queries the associated emied adjoint radiance 𝐴𝑒 and propagates these gradients

into the scene, while accounting for geometric discontinuities via reparameterization.

1 def reparam_rb_Li(𝝅, x, 𝝎, 𝜹𝐿):

2 # Find an intersection with the scene geometry

3 x′ = r(x,𝝎)
4 # T1: Backpropagate to reparameterized emitter parameters, if any

5 𝜹𝝅 = adjoint([[ 𝐿e (x′,−𝝎) ]], 𝜹𝐿)

6 # Sample a direction from the BSDF

7 𝝎 ′, b_val, b_pdf = sample 𝑓𝑠 (x′,𝝎 ′→−𝝎)
8 # T2: Backpropagate to reparameterized BSDF parameters

9 𝜹𝝅 += adjoint([[ 𝑓𝑠 (x′, 𝑅(𝝎 ′, 𝝅)→−𝝎) ]], 𝜹𝐿 * 𝐿i (x,𝝎 ′) / b_pdf)

10 # T4: Backpropagate through the divergence

11 𝜹𝝅 += adjoint([[ ∇𝝎′ · 𝑅(𝝎 ′, 𝝅) ]], 𝜹𝐿 * b_val * 𝐿i (x,𝝎 ′) / b_pdf)

12 # T3: Recurse to account for indirect differential radiance

13 return 𝜹𝝅 + reparam_rb_Li(𝝅, x′, 𝑅(𝝎 ′, 𝝅), 𝜹𝐿 * b_val / b_pdf)

Algorithm 4.4: This pseudocode fragment provides reparam_rb_Li() referenced in Algorithm 4.3. It

implements the reparameterized RB version of the transport and scaering equation that transports

derivatives through the scene and backpropagates adjoint radiance 𝜹𝐿 to objects with dierentiable pa-

rameters.
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Incident illumination Scale factor

Figure 4.17: The incident illumination 𝐿i (𝝎) that is visible from a given shading point contains many

discontinuities (blue lines). Aached sampling in such a scenario produces biased gradients, even if these

discontinuities are static with respect to the dierentiated scene parameter. To address this complica-

tion, we introduce a reparameterization that gradually slows down dierential sample movement caused

by such strategies based on a smooth scaling factor 𝐵(𝝎) which approaches one at all discontinuities,

including the horizon of the visible hemisphere.

4.4.2 Reparameterizing aached strategies

As discussed earlier in Section 4.2.2, attached sampling provides a convenient way to
reuse a primal sampling procedure in a dierential estimator. Accounting for its param-
eter dependence during dierentiation can be an eective variance reduction strategy.

Unfortunately, the parameter-dependent change of variables𝑇 (u, 𝜋) also causes pre-
viously static discontinuities to move with respect to perturbations in 𝜋 (see Figure 4.12),
which severely limits the utility of this approach. To address these challenges, we we
dene a secondary parameterization analogous to Equation (4.22), which will similarly
counteract the movement of the sampled directions to prevent issues with bias due to
discontinuities:

𝑅 (A) (𝝎, 𝜋) = 𝝎 − 𝐵(𝝎)𝑇 (u, 𝜋) + 𝐵(𝝎)𝑇 (u, 𝜋0). (4.53)

Interestingly, our goal here is reversed from the previous reparameterization (4.22): in-
stead of introducing a new dependence of samples on 𝜋 , we now want to (partially)
suppress movement. Again, 𝜋0 only takes on the (primal) value of 𝜋 but is not dieren-
tiated, and u = 𝑇 −1(𝝎, 𝜋0). 𝐵(𝝎) can be interpreted as a smooth scaling factor used to
slow down the moving samples as they approach discontinuities. For example, setting
𝐵(𝝎) = 1∀𝝎 would freeze all sample movement and the attached and reparameterized
strategy simplies to the standard detached estimator (4.29).

Based on this observation, wewill use𝐵(𝝎) to transition back to a detached estimator
near the discontinuities where the attached strategies are troublesome. At the same time,
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we can still take advantage of the variance reduction due to attached sampling away
from discontinuities. We found the boundary test �̃� from Bangaru et al. [73] to work
well for this purpose when turned into a smoothed interpolant using their harmonic
convolution approach (4.23). Before the convolution, we also multiply �̃� with another
scaling factor that freezes samples towards the horizon of the hemisphere dened from
the shading frame. This is important when, e.g., evaluating a reparameterized BSDF
and dierentiation aects the surface normal dening its shading frame. We show an
(abstract) visualization of such a scaling factor in Figure 4.17.

To apply the reparameterization𝑅 (A) in practice, we also need to compute derivatives
of its Jacobian determinant:

𝜕𝜋 |𝐽𝑅 (A) (𝝎, 𝜋) | = 𝜕𝜋

[
∇𝝎 · 𝑅 (A) (𝝎, 𝜋)

]
= 𝜕𝜋 [∇𝝎 · (𝐵(𝝎)𝑇 (u, 𝜋))]
= ∇𝝎 𝐵(𝝎) · 𝜕𝜋𝑇 (u, 𝜋) + 𝐵(𝝎) · 𝜕𝜋 [∇𝝎 ·𝑇 (u, 𝜋)]
= ∇𝝎 𝐵(𝝎) · 𝜕𝜋𝑇 (u, 𝜋) + 𝐵(𝝎) · 𝜕𝜋 |𝐽𝑇 (u, 𝜋) |. (4.54)

For this we used again the relation between divergence and Jacobian determinant [73]
and the fact that 𝐵 is a scalar quantity that is independent of 𝜋 . The directional derivative
∇𝝎 𝐵(𝝎) can be approximated alongside 𝐵(𝝎) as part of the harmonic convolution (4.23)
and the Jacobian determinant has a closed form solution

|𝐽𝑇 (u, 𝜋) | =
𝑝 (𝑇 (u, 𝜋0), 𝜋0)
𝑝 (𝑇 (u, 𝜋), 𝜋) (4.55)

using the probability density 𝑝 associated with 𝑇 .
As this new reparameterization is based on similar principles as prior work [73, 156],

it also inherits its limitations. In particular it is only dened for integration over the unit
sphereS2 and is not sucient for attached strategies that involve dierentiation through
multiple scattering events at once. To ensure the correctness of the computed gradients
in our implementation, we thus split the integrand in Equation (4.48) into two parts.
The indirect illumination component of 𝐿i is handled analogously to the previous sec-
tion and uses a detached estimator. The direct component however involves a nested
reparameterization where 𝑅 and 𝑅 (A) now counteract both types of discontinuities dis-
cussed in this section. Reverse mode dierentiation will then automatically propagate
gradients through both parameterizations. Finally, we can apply the attached estimator
from Equation (4.31) to the integral. We call this approach the reparameterized attached

strategy, and two example comparisons to “naïve” attaching can be seen in Figure 4.18.

152



Chapter 4. Dierential Monte Carlo Estimators

Texture gradients
Scene setup

Rough conductor plane

Environment emitter

Occluding
sphere

Tilted shading frame

(a
)R

ou
gh

ne
ss

te
xt
ur

e
gr
ad

ie
nt
s

(b
)N

or
m
al

m
ap

te
xt
ur

e
gr
ad

ie
nt
s

Figure 4.18: We show two typical examples where reparameterized aached sampling is crucial to com-

pute correct parameter gradients in presence of static discontinuities. (a)We dierentiate pixel intensity

with respect to the textured roughness 𝜋 of a metal surface. Part of the environment illumination is

occluded by a sphere, causing a discontinuity for the sampled directions 𝝎i that move based on 𝜋 . (b)
A similar setup where 𝜋 represents a normal map that causes shading normals ns to deviate from the

geometric normal ng. No discontinuities are present apart from the boundary of the shading frame that

is aected by 𝜋 , i.e. 𝝎i that are sampled based on ns can “move” below the horizon. Naïve aached sam-

pling misses important gradients compared to a (detached) reference that our reparameterized aached

strategy is able to compute correctly.
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4.5 Results

We evaluated our methods experimentally in a dierentiable rendering system based on
Mitsuba 2 [4]. All experiments were performed on an NVIDIA TITAN RTX graphics
card (23 GiB of RAM) using OptiX 7.2 [181] for hardware-accelerated ray tracing.

4.5.1 Variance analysis

We now turn to concrete example scenes to analyze the statistical behavior of several
dierential estimators presented in this chapter. Figure 4.19 represents a controlled test
setup based on a scene by Veach and Guibas [66] (compare also with Figure 2.27) with
single-bounce glossy reections for varying roughness values and light source sizes.
Figures 4.20 and 4.21 revisit the complex scene from Figure 4.1 that contains many glossy
interreections involving varying degrees of roughness, as well as complex illumination
from a combination of area lights and an environment map.

In both cases we compute gradient images with respect to a single value 𝜋 that is
added to all roughness parameters in the scene. In other words, this illustrates what
happens to the renderings when all glossy objects are roughened slightly. Like in primal
rendering, the eciency of estimators depends also on the concrete values of the (dif-
ferentiated) scene parameters so this allows us to assess the variance at various levels of
roughness at once.

Recall that the desired roughness gradients are computed through the BSDF term
(T3) in the dierentiated (and reparameterized) rendering equation (4.50). As discussed
throughout the previous sections, there exist many sampling strategies to construct a
Monte Carlo estimator, and the following table lists all individual options:

Reparam.
attached

Diff.
detachedDetached

Naïve
attached

BSDF sampling variants: Emitter sampling variants:

Detached

Most estimators (green ticks) are valid whereas the naïve attached strategy produces
biased gradients (red cross) due to the discontinuities introduced by the attached sam-
pling process. Note that emitter sampling only exists in a default detached option as it
is independent of the dierentiated roughness parameter.

When now combining emitter sampling and the four BSDF sampling strategies using
MIS we arrive, in principle, with 16 additional estimators, because the involved MIS
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weights can also be either attached or detached:

BSDF sampling variants + MIS with (detached) emitter sampling:
Reparam.

Detached attached
Diff.
detached

Naïve
attached

Detached estimator, detached MIS weights

Attached estimator, attached MIS weights

Attached estimator, detached MIS weights

Detached estimator, attached MIS weights

Most combinations however are incompatible (grey boxes): for example, attached MIS is
not able to combine two detached strategies. Also recall that the MIS variant involving
detached weights but attached estimators always produces biased results. As a conse-
quence, only ve variants are actually valid and unbiased.

Figures 4.19 to 4.21 compare all correct estimator options, with the exception of the
detached estimator, attached weights combination (last row) which we found to perform
slightly worse, but roughly equivalent to the version that detaches both the weights and
the estimators (rst row). In addition, we also show results using the naïve attached

strategy (without any MIS) to again illustrate the bias due to discontinuities.
Like in forward rendering, (detached) emitter sampling is good at handling concen-

trated illumination reected by relatively rough surfaces. In contrast, the analysis of
material-based dierential estimators is more nuanced. While weaknesses of individual
strategies mostly carry over into their dierentiated versions, the same is not the case
for their strengths. For instance, the eectiveness of detached BSDF sampling on highly
specular materials is greatly reduced compared to its primal counterpart, which occurs
due tomismatches between integrand and sampling density (Section 4.2.1). The dieren-
tial sampling strategy for microfacet BSDFs (Section 4.3) is generally the most robust in
these tests. None of the discussed strategies is specically designed to handle chainswith
multiple glossy interactions, and variance is consequently high in such image regions.
Attached sampling (Section 4.2.2) is most complex in terms of dierentiation, since it
must also consider the parameter dependence of samples. If done naïvely, this depen-
dence can introduce discontinuities that can add bias. Our reparameterized attached
strategy (Section 4.4.2) avoids this bias and at times achieves signicant improvements
over detached BSDF sampling. Its eectiveness in Figures 4.20 and 4.21 is held back by
limitations regarding product sampling between BSDF and incident illumination (Sec-
tion 4.2.2). Adding MIS with the emitter sampling strategy improves robustness in all
cases, as expected from analogous situations when rendering primal images.
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Emitter sampling
BSDF sampling,
detached

BSDF sampling,
reparam. attached

BSDF sampling,
diff. detached

BSDF sampling,
näive attached

BSDF sampling,
detached + MIS

BSDF sampling,
reparam. attached + MIS

BSDF sampling,
diff. detached + MIS

Method is
biased.

N/A

Emitter sampling
BSDF sampling,
detached

BSDF sampling,
reparam. attached

BSDF sampling,
diff. detached

BSDF sampling,
näive attached

BSDF sampling,
detached + MIS

BSDF sampling,
reparam. attached + MIS

BSDF sampling,
diff. detached + MIS

Primal rendering FD reference

−20

+20

0

50x scale

Figure 4.19: Equal-time comparison of gradient estimators based on a classic scene by Veach and Guibas.

We dierentiate the roughness textures of the metal plates; the average Beckmann roughness increases

from top to boom (𝛼avg ∈ {0.01, 0.02, 0.06, 0.13}). (a) Primal rendering of the scene. (b) Ground-truth
gradients computed using finite dierences at a high sample count. (c) Gradients computed using emit-

ter sampling. (d–f) Three unbiased estimators using detached, dierential detached, and reparameter-

ized aached BSDF strategies. (g) As in Figure 4.18, naïve aached BSDF sampling exhibits bias due to

parameter-dependent discontinuities. We had to scale the gradients of this technique by a factor of 50×
so that they are visible. (h–j) Additional estimators involving MIS with emier sampling. (k–r) Visual-
izations of the standard deviation for all estimators.
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Method is
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Method is
biased.
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Figure 4.20: Equal-sample comparison of the discussed gradient estimators on a scene involving glossy

interreflections and complex illumination. Insets focus on three representative regions of the imagewhere

we show both the computed gradient images, and the estimator standard deviation using false color

visualizations.
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Emitter sampling
BSDF sampling,
detached

BSDF sampling,
reparam. attached

BSDF sampling,
diff. detached

BSDF sampling,
näive attached

BSDF sampling,
detached + MIS

BSDF sampling,
reparam. attached + MIS

BSDF sampling,
diff. detached + MIS

Method is
biased.

N/A

Emitter sampling
BSDF sampling,
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BSDF sampling,
reparam. attached

BSDF sampling,
diff. detached

BSDF sampling,
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BSDF sampling,
detached + MIS

BSDF sampling,
reparam. attached + MIS

BSDF sampling,
diff. detached + MIS

Primal rendering FD reference

Figure 4.21: The same comparison as in Figure 4.20 but using uncropped images.
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4.5.2 Optimizing spatially varying roughness

Figure 4.22 compares the convergence of dierent estimators in a simple optimization
task. We optimize the spatially varying roughness of a at surface using standard stochas-
tic gradient descent and a single view. We compare three estimators (detached, dier-
ential, and attached BSDF sampling) and two conditions: a rough microfacet (GGX) ma-
terial under natural environment illumination, and a more specular microfacet (Beck-
mann) material under smooth synthetic directional illumination (three colored light
sources with emission proles modeled by spherical von Mises-Fisher distributions).
Reparameterization is not needed here due to the lack of discontinuities.

All three methods compute the correct gradients in expectation, and they generate
samples in a comparable amount of time. Therefore, the main distinguishing factor is
their variance and the resulting impact on convergence speed. In all cases, we begin
with a randomly initialized texture and run 100 iterations of SGD with a xed learn-
ing rate. The observed convergence behavior is unsurprising and matches our previous
observations on the variance of specic estimators: detached sampling handles rough
reections relatively well, but is clearly outperformed by the other methods in the more
specular setting. Attached sampling based on the BSDF is expected to perform poorly
when the reparameterization warps another factor with signicant variation like the
interior environment map. Nonetheless, this approach actually performs best in the sec-
ond setting with smooth illumination. Dierential sampling is robust in both cases and
always outperforms detached sampling.

4.5.3 Eicient dierentiation of geometric discontinuities

We compare our approach to geometric discontinuities to the method of Loubet et al.
[156]. The dierential evaluation of this prior work was based on conventional AD and
therefore rigidly coupled to the primal computation. Both steps proceeded via wave-

fronts, where one or more computational kernels were launched per scattering event,
exchanging intermediate state via global memory. However, both reverse mode AD and
wavefront-style execution come at the cost of severe storage requirements that are pro-
portional to both scene complexity (path length) and rendering quality (resolution, sam-
ples per pixel). Once the available GPU memory is exhausted, the computation must be
split into multiple passes to curtail memory usage, which tends to further increase the
cost of gradient evaluation.
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Figure 4.22: Convergence comparison of various BSDF sampling techniques in the context of roughness

texture optimization. The statistical eiciencies when computing gradients using the various estimators

(detached, dierential detached, and aached) also manifest themselves in terms of varying convergence

rates when using them during optimization based on stochastic gradient descent. Dierential detached

sampling (green) performs robustly in dierent seings and always outperforms the detached method

(blue) that relies on less eicient, primal microfacet sampling in this case. Aached sampling (red) can
outperform both detached variants in cases where incident illumination is smooth (boom) but can be

ineicient in case of more complex illumination (top) due to its limitations involving product integrals.
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Time elapsed [s] over samples per pixel Memory usage [GiB] over samples per pixel

Figure 4.23: Performance comparison between reparameterized RB (blue) and the method of Loubet

et al. [156] (green). When computing image gradients with respect to translation of the chair, both

methods produce gradients with roughly equivalent variance, but involving substantially dierent time

and memory requirements. Loubet et al.’s method is based on wavefront-style evaluation that saturates

the 23 GiB of VRAM of a Titan RTX card at a resolution of 256 × 256 with 16 samples per pixel. Beyond

this point, computation needs to be split into multiple passes or crops, causing a steeper increase in

computation time (dashed lines). The adjoint approach of reparameterized RB is compatible with a more

eicient megakernel-style evaluation with minimal memory requirements and improved runtime cost.

The technique described in Section 4.4 improves upon this in two ways: rst, it in-
corporates Loubet et al. [156] change of variables into a dierential light transport sim-
ulation that propagates the derivative of received radiance in reverse mode. This breaks
the rigid coupling between primal and dierential phases and thus also the need to mem-
orize primal program variables associated with each scattering interaction. The second
improvement comes as an immediate corollary and matches a corresponding step in
prior work [155]: casting the dierentiation task as a transport simulation enables the
implementation of the method using megakernel-style evaluation that nally removes
all need to maintain large memory regions for intermediate program state.

The benchmark in Figure 4.23 compares our method’s computation time and mem-
ory usage to the method of Loubet et al. using their reference implementation. The test
scene exhibits low complexity, and the path length was limited to only two bounces.
Still, memory usage of the method of Loubet et al. easily exceeds the total capacity of
the used NVIDIA TITAN RTX graphics card (23 GiB) at low image resolution and sample
count. Increasing either quality knob then requires rendering in passes, which has a ad-
verse eect on the computation time. The memory usage of our method is independent
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Figure 4.24: 6D camera pose and light position estimation in a scene with complex light transport involv-

ing so shadows and glossy interreflections. Top: Camera view at dierent steps during optimization.

Boom: Visualization of the scene from the top at the same steps (camera shown as an actual object).

Right: Convergence of the loss and error plots of the 9 parameters that are jointly optimized.

of resolution and sample count as no primal simulation variables must be stored, and
this leads to improved scalability in such cases.

We now demonstrate two prototypical optimization tasks performed using the repa-
rameterized RB method.

4.5.4 Camera and light source pose estimation

In Figure 4.24, we consider a 6D pose estimation application: we determine the position
and orientation of the camera in a target image, as well as the location of a spherical area
light. The scene used in this experiment exhibits complex eects like glossy interreec-
tions, soft shadows, and global illumination which are all naturally handled using physi-
cally based methods but would be challenging for dierentiable rasterizers. Our method
reparameterizes all ray directions to avoid discontinuities from the moving light source.
Recall from Section 4.4 that this step computes surface intersections such that the ray di-
rection derivatives follow the direction of the silhouette discontinuities. Unsurprisingly,

162



Chapter 4. Dierential Monte Carlo Estimators

the moving camera causes a similar type of discontinuity requiring another reparame-
terization. It uses a slightly modied ray intersection, in which the camera origin and
direction are explicitly part of the dierentiation process.

4.5.5 Geometry and shading optimization

Figure 4.25 showcases the joint reconstruction of shape and material from a set of tar-
get images, using our reparameterized RB algorithm with detached BSDF sampling (all
materials are diuse, hence attached and detached strategies coincide). The reference is
synthetic and rendered from 5 surrounding viewpoints, and we furthermore validate the
resulting reconstruction using a hold-out viewpoint placed on top of the target. We pa-
rameterize the object using a displaced ellipsoid base mesh (64×64 displacement texture)
and a diuse albedo texture (1024 × 1024 pixels), which requires simultaneous dieren-
tiation with respect to more than one million parameters. For this to be feasible within a
realistic amount of time, reverse mode dierentiation is key. We have found the relative
L1 loss function to be well-suited for this challenge as it focuses evenly on all regions
of the images despite dierent brightness levels. To avoid convergence to local minima
during the optimization, we use a multi-resolution scheme where the optimized textures
start out at low resolution and are gradually upsampled to their target sizes throughout
the process.
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Figure 4.25: Joint optimization of a displacement map and a diuse texture. More than a million param-

eters are optimized simultaneously (1024 × 1024 diuse texture, 64 × 64 displacement texture) for five

dierent view points scaered around the object. Rows 1-3: Subsequent states of the target object dur-
ing the optimization for three out of the five observed views. Row 4: The same states from a hold-out

point of view, looking at the object from the top. Row 5: Convergence rates for both optimized and

unoptimized view points.
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4.6 Summary and future work

Dierentiable Monte Carlo rendering provides a powerful new instrument in the pursuit
of complex visual inverse problems in computer graphics and beyond. The initial prob-
lem denition is easily stated: one must simply evaluate the derivative of an estimator.
Yet, pursuing the path of this harmless dierential leads to an astonishing proliferation
of estimators, parameterizations, and parameterizations of parameterizations, revealing
that we must now revisit many previously well-understood aspects of rendering in a dif-
ferent light. Our work represents a rst survey of the large space of dierential Monte
Carlo transport estimators. Many specimens encountered by this exploration were still
fundamentally based on an underlying primal algorithm, although we show that spe-
cialized dierential estimators hold signicant promise in improving the eciency of
dierentiable rendering in the future. Many other directions are conceivable: we envi-
sion next event estimators for emitted dierential radiance and dierential path guiding.
At the same time, our analysis shows that intuition from the primal world may not al-
ways transfer.

Discontinuous integrands remain a bothersome element of dierentiable rendering.
Our work shows how suitable reparameterizations can be integrated into an ecient ad-
joint method, enabling geometric optimization of scenes with vast numbers of param-
eters and essentially no memory overheads. On the ipside, these mappings increase
the cost of dierentiable rendering considerably, and their stochastic nature can inject
extra variance into otherwise benign integrals. Another current issue entails chains
of specular interactions that may each introduce a separate set of discontinuities. Cur-
rent parameterization-based techniques only focus on directly visible discontinuities and
therefore cannot handle such cases.

Multiple importance sampling for dierentiable estimators remains highly useful,
but other aspects of it are still poorly understood: dierentiable estimators are poten-
tiallymuchworse than their primal analogues, and this is not “perceived” byMISweights
that are based on primal probabilities. Developing a truly dierential form of MIS that
transfers the optimality will be a promising avenue of future research.

While gradients are important for high-dimensional optimization, they alone may
not be enough when the objective is highly non-convex. Certain scene representations
(e.g. vertex positions of a triangle mesh) are particularly susceptible and produce unde-
sirable local minima. Further research is necessary to understand how scene parameter-
izations aect the energy landscape of optimization tasks.
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5 | Conclusion

We investigated two dierent use cases of light path gradients in this thesis that advance
the areas of forward and inverse physically based rendering respectively.

The rst part of the thesis is concerned with forward rendering of caustics and glints,
two visually striking optical eects that are particularly troublesome for many previous
rendering techniques. The main challenge here lies in nding specular light paths that
satisfy the laws of reection and refraction at each path vertex. We proposed a sur-
prisingly simple, and extensible sampling strategy for these paths and can drastically
improve convergence rates in these settings. At its core, the method employs numerical
root-nding in the domain of light paths that is driven by their geometric gradients.

In the second part we discussed dierentiable rendering and how it can be used to
solve challenging inverse problems. By dierentiating the entirety of light transport
in a scene, we can apply gradient-based optimization to recover large numbers of un-
known scene parameters from a set of image observations. We presented a comprehen-
sive overview of the large space of dierential Monte Carlo estimators that can solve
such problems. Additionally, we examined how to dierentiate the inconvenient but
omnipresent case of discontinuous rendering integrals.

The underlying Newton solver of our caustic sampling method is, in principle, a
dierentiable computation itself. This means it is also conceivable to combine the two
topics above. Gradients due to changes in specular geometry are especially helpful for
inverse design tasks of caustics or lenses and specialized dierentiable rendering algo-
rithms targeting these use cases could be highly benecial.

The use of gradients for forward or inverse rendering is not fundamentally new—
there is a long tradition of accelerating rendering techniques using various forms of
derivative information, and rst instances of dierentiable rendering for optimizing
scene parameters also date back almost a decade. However, the latter has recently seen
a tremendous rise in popularity and has developed into its own, fascinating sub-eld
of physically based rendering. Advances in this area have the potential to greatly im-
pact imaging tasks in many scientic disciplines outside of core computer graphics. This
presents an exciting time for rendering researchers: not only does dierentiation require
us to answer a plethora of new questions, there is also ample opportunity to repurpose
and adapt existing forward rendering techniques.
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The forward problem itself is also far from being solved. Path tracing strikes a good
balance between rendering eciency and implementation simplicity. With the help of
dedicated ray tracing hardware on modern GPUs, it can even be pushed towards real-
time performance. But it can also be surprisingly brittle in certain scenarios. For current
applications, users of a rendering system have to carefully design input scenes around
known limitations of the algorithm to achieve reasonable convergence rates. More work
on robust techniques is needed to improved these workows. It is also likely that these
will simultaneously advance the state-of-the-art in inverse rendering techniques as the
two sub-elds are tightly coupled.

There are a few notable research directions that are orthogonal to the two main
chapters of this thesis.

For instance, most material models in current production systems are built from sim-
ilar building blocks—usually a combination of diuse reectance and a specular response
based on microfacet theory. While this can produce a wide range of plausible appear-
ances it remains an idealized model and cannot match the true scattering distribution of
many materials found in the real world.

Due to the relatively slow convergence rate of Monte Carlo integration, only few
practical applications can actually aord to render completely noise-free images. In-
stead, denoising methods are an indispensable part of production pipelines. These ex-
ceed at recovering ne details from geometry or textures at extremely low sample counts—
but often still struggle to resolve other noisy high-frequency content such as caustics.

It is likely that denoising could play an equally important role in the context of dier-
entiable rendering, where sparse and noisy gradient observations could be reconstructed
in order to signicantly speed up optimization tasks.

We are excited to see where future progress in physically based forward and inverse
rendering will lead and what new insights we can gain along this journey.
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A | Derivatives of the new specular
manifold constraints

Recall our proposed specular constraints from Section 3.3.1,

c𝑖 =

(
𝜃 (−→𝝎𝑖) − 𝜃 (S(←−𝝎𝑖, n𝑖, 𝜂𝑖))
𝜙 (−→𝝎𝑖) − 𝜙 (S(←−𝝎𝑖, n𝑖, 𝜂𝑖))

)
, (A.1)

here slightly rewritten using a shorthand notation

−→𝝎𝑖 B
x𝑖+1 − x𝑖
‖x𝑖+1 − x𝑖 ‖

and ←−𝝎𝑖 B
x𝑖−1 − x𝑖
‖x𝑖−1 − x𝑖 ‖

. (A.2)

We will assume that each specular vertex x𝑖 is ultimately parameterized with 2D coor-
dinates (𝑢𝑖, 𝑣𝑖). In order to use the multivariate Newton method to nds roots of Equa-
tion (A.1), we need access to the partial derivatives 𝜕c𝑖/𝜕𝑢 𝑗 and 𝜕c𝑖/𝜕𝑣 𝑗 . Like in the case
of the previous half-vector constraints by Jakob and Marschner [116], each c𝑖 only in-
volves the three vertices x𝑖−1, x𝑖 and x𝑖+1, i.e. many entries of the Jacobian matrix are
zero-valued. See Section 3.1 for details.

In the following paragraphs we list the required derivatives with respect to an ar-
bitrary variable 𝑠 that can either be the 𝑢 or 𝑣 dimension of the parameterization. Ulti-
mately, these depend on the partial derivatives of surface positions and shading normals
𝜕x/𝜕𝑢, 𝜕n/𝜕𝑢, etc. that are usually computed during the ray-geometry intersection in most
rendering systems [8].

Note also that in cases of total internal reection, we use the alternate constraint

c𝑖 =

(
𝜃 (←−𝝎𝑖) − 𝜃 (S(−→𝝎𝑖, n𝑖, 𝜂𝑖))
𝜙 (←−𝝎𝑖) − 𝜙 (S(−→𝝎𝑖, n𝑖, 𝜂𝑖))

)
(A.3)

instead. The computation of its derivatives follows analogously however.

Constraint derivatives.

𝜕c𝑖
𝜕𝑠𝑖−1

= − 𝜕

𝜕𝑠𝑖−1
𝜃 (S(←−𝝎𝑖, n𝑖, 𝜂𝑖)) (A.4)

𝜕c𝑖
𝜕𝑠𝑖

=
𝜕

𝜕𝑠𝑖
𝜃 (−→𝝎𝑖) −

𝜕

𝜕𝑠𝑖
𝜃 (S(←−𝝎𝑖, n𝑖, 𝜂𝑖)) (A.5)

𝜕c𝑖
𝜕𝑠𝑖+1

=
𝜕

𝜕𝑠𝑖+1
𝜃 (−→𝝎𝑖) (A.6)
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Spherical coordinates derivatives.

𝜕

𝜕𝑠
𝜃 (𝝎) = 𝜕

𝜕𝑠
arccos(𝝎𝑧) = −

1√︁
1 − 𝝎2

𝑧

𝜕𝝎𝑧

𝜕𝑠
(A.7)

𝜕

𝜕𝑠
𝜙 (𝝎) = 𝜕

𝜕𝑠
arctan2(𝝎𝑦,𝝎𝑥 ) =

𝝎𝑥
𝜕𝝎𝑦

𝜕𝑠
− 𝝎𝑦

𝜕𝝎𝑥

𝜕𝑠

𝝎2
𝑥 + 𝝎2

𝑦

(A.8)

Direction derivatives.

𝜕
−→𝝎𝑖

𝜕𝑠𝑖−1
=

𝜕

𝜕𝑠𝑖−1

x𝑖+1 − x𝑖
‖x𝑖+1 − x𝑖 ‖

= 0

𝜕
−→𝝎𝑖

𝜕𝑠𝑖
=

𝜕

𝜕𝑠𝑖

x𝑖+1 − x𝑖
‖x𝑖+1 − x𝑖 ‖

=
−1

‖x𝑖+1 − x𝑖 ‖

[
𝜕x𝑖
𝜕𝑠𝑖
− −→𝝎𝑖

(
−→𝝎𝑖 ·

𝜕x𝑖
𝜕𝑠𝑖

)]
𝜕
−→𝝎𝑖

𝜕𝑠𝑖+1
=

𝜕

𝜕𝑠𝑖+1

x𝑖+1 − x𝑖
‖x𝑖+1 − x𝑖 ‖

=
1

‖x𝑖+1 − x𝑖 ‖

[
𝜕x𝑖+1
𝜕𝑠𝑖+1

− −→𝝎𝑖

(
−→𝝎𝑖 ·

𝜕x𝑖+1
𝜕𝑠𝑖+1

)]
and

𝜕
←−𝝎𝑖

𝜕𝑠𝑖−1
=

𝜕

𝜕𝑠𝑖−1

x𝑖−1 − x𝑖
‖x𝑖−1 − x𝑖 ‖

=
1

‖x𝑖−1 − x𝑖 ‖

[
𝜕x𝑖−1
𝜕𝑠𝑖−1

−←−𝝎𝑖

(
←−𝝎𝑖 ·

𝜕x𝑖−1
𝜕𝑠𝑖−1

)]
𝜕
←−𝝎𝑖

𝜕𝑠𝑖
=

𝜕

𝜕𝑠𝑖

x𝑖−1 − x𝑖
‖x𝑖−1 − x𝑖 ‖

=
−1

‖x𝑖−1 − x𝑖 ‖

[
𝜕x𝑖
𝜕𝑠𝑖
−←−𝝎𝑖

(
←−𝝎𝑖 ·

𝜕x𝑖
𝜕𝑠𝑖

)]
𝜕
←−𝝎𝑖

𝜕𝑠𝑖+1
=

𝜕

𝜕𝑠𝑖+1

x𝑖−1 − x𝑖
‖x𝑖−1 − x𝑖 ‖

= 0

Here, we used the fact that 𝜕x𝑖/𝜕𝑠 𝑗 = 0 for all 𝑖 ≠ 𝑗 together with the identity

𝜕

𝜕𝑠

v(𝑠)
‖v(𝑠)‖ =

1
‖v(𝑠)‖

[
𝜕v(𝑠)
𝜕𝑠
− v(𝑠)
‖v(𝑠)‖

(
v(𝑠)
‖v(𝑠)‖ ·

𝜕v(𝑠)
𝜕𝑠

)]
(A.9)

that gives the derivative of a normalized vector.

Reflection and refraction derivatives. The derivatives of the laws of reection and
refraction are

𝜕

𝜕𝑠 𝑗
Sr(𝝎, n𝑖) = 2

[
𝑄𝑖 𝑗n𝑖 + (𝝎 · n𝑖)

𝜕n𝑖
𝜕𝑠 𝑗

]
− 𝜕𝝎

𝜕𝑠 𝑗
(A.10)

and

𝜕

𝜕𝑠 𝑗
St(𝝎, n𝑖, 𝜂𝑖) = − 𝜂𝑖

[
𝜕𝝎

𝜕𝑠 𝑗
−

(
𝑄𝑖 𝑗n𝑖 + (𝝎 · n𝑖)

𝜕n𝑖
𝜕𝑠 𝑗

)]
(A.11)

−
[
𝜕n𝑖
𝜕𝑠 𝑗

𝑅𝑖 + n𝑖
(
1
2𝑅𝑖

(
−𝜂2𝑖

(
−2(𝝎 · n𝑖)𝑄𝑖 𝑗

) ) )]
(A.12)
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respectively, with

𝑄𝑖 𝑗 =

(
𝜕𝝎

𝜕𝑠 𝑗
· n𝑖

)
+

(
𝝎 · 𝜕n𝑖

𝜕𝑠 𝑗

)
(A.13)

𝑅𝑖 =

√︃
1 − 𝜂2

𝑖
(1 − (𝝎 · n𝑖)2). (A.14)

Here, depending on the 𝝎 argument and 𝑗 ∈ {𝑖 − 1, 𝑖, 𝑖 + 1}, many of the terms simplify
considerably. Note also that 𝜕n𝑖/𝜕𝑠 𝑗 = 0 for all 𝑖 ≠ 𝑗 , so some of the terms evaluate to
zero.
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B | Derivation of the dierentialmi-
crofacet sampling

Section 4.3.1 presented the derivative of standard microfacet distributions with respect
to their roughness parameter 𝛼 :

𝜕𝛼 [𝐷GGX(𝜃, 𝛼) · cos𝜃 ] =
4𝛼 tan𝜃 (tan2 𝜃 − 𝛼2)
cos2 𝜃 (𝛼2 + tan2 𝜃 )3 , (B.1)

𝜕𝛼 [𝐷Beck.(𝜃, 𝛼) · cos𝜃 ] =
4𝑒−

tan2 𝜃
𝛼2 tan𝜃 (tan2 𝜃 − 𝛼2)

𝛼5 cos2 𝜃
. (B.2)

These are both functions that consist of a positive and negative lobe and have their zero
crossing at 𝜃0 = arctan(𝛼). Both lobes have equal area and can be individually nor-
malized using normalization constants 𝑁dGGX = 1/(2𝛼) and 𝑁dBeck. = 2/(𝛼 𝑒) respectively.
From this we get two densities each that are proportional to the absolute value of the
derivatives, see Figure 4.15:

𝑝−dGGX(𝜃 ) = −𝑝dGGX(𝜃 ) and 𝑝+dGGX(𝜃 ) = 𝑝dGGX(𝜃 ) (B.3)

with

𝑝dGGX(𝜃 ) =
8𝛼2 tan𝜃 (tan2 𝜃 − 𝛼2)
cos2 𝜃 (𝛼2 + tan2 𝜃 )3 , (B.4)

and

𝑝−dBeck.(𝜃 ) = −𝑝dBeck.(𝜃 ) and 𝑝+dBeck.(𝜃 ) = 𝑝dBeck.(𝜃 ) (B.5)

with

𝑝dBeck.(𝜃 ) =
2𝑒1−

tan2 𝜃
𝛼2 tan𝜃 (tan2 𝜃 − 𝛼2)

𝛼4 cos2 𝜃
. (B.6)

Because of our use of antithetic sampling, we will actually sample from these positive
and negative densities separately. Here, we show how this can be achieved using inverse
transform sampling (Section 2.4.3).

We rst integrate the derivative with respect to 𝛼 over elevation angles 𝜃 to obtain
associated CDFs:

𝑃−dGGX(𝜃 ) =
∫ 𝜃

0
𝑝−dGGX(𝜃

′) d𝜃 ′ = 4𝛼2 sin2(2𝜃 )
((𝛼2 − 1) cos(2𝜃 ) + 𝛼2 + 1)2

, (B.7)

𝑃+dGGX(𝜃 ) =
∫ 𝜃

𝜃0

𝑝+dGGX(𝜃
′) d𝜃 ′ =

(
(𝛼2 + 1) cos(2𝜃 ) + 𝛼2 − 1

)2
4 ((𝛼2 − 1) cos2 𝜃 + 1)2

(B.8)
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and

𝑃−dBeck.(𝜃 ) =
∫ 𝜃

0
𝑝−dBeck.(𝜃

′) d𝜃 ′ = 𝑒
1− tan2 𝜃

𝛼2 tan2 𝜃
𝛼2 , (B.9)

𝑃+dBeck.(𝜃 ) =
∫ 𝜃

𝜃0

𝑝+dBeck.(𝜃
′) d𝜃 ′ = 1 − 𝑃−dBeck.(𝜃 ). (B.10)

These can then be inverted to arrive at the sampling techniques𝑇 that suitably transform
uniform random variates 𝑢 ∈ [0, 1) into elevation angles 𝜃 :

𝜃−dGGX =
1
2
arctan

©«
2𝛼

√︃
𝑢 (2 − 2

√
1−𝑢 + 2𝛼4(1 +

√
1−𝑢) − 𝑢 (𝛼2−1)2)

𝑢 + 4𝛼2
√
1 − 𝑢 − 𝑢𝛼4

ª®®¬ , (B.11)

𝜃+dGGX = arctan

(
𝛼

√︄
−

(
1 + 2
√
𝑢 − 1

))
, (B.12)

and

𝜃−dBeck. = arctan

(
𝛼

√︂
−W0

(
−𝑢
𝑒

))
, (B.13)

𝜃+dBeck. = arctan ©«𝛼
√︄
−W−1

(
𝑢 − 1
𝑒

)ª®¬ . (B.14)

Note that the Beckmann variant uses the branches 𝑘 ∈ {−1, 0} of the Lambert W func-

tion W𝑘 (𝑥) which unfortunately is not available in analytic form. We found it easiest
to use a numeric evaluation based on a few iterations of a Newton solver, though alter-
natively, approximated implementations that can be evaluated directly are available as
well [182].
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